CD25 regulatory T cells determine secondary but not primary remission in EAE: Impact on long-term disease progression☆

2006 ◽  
Vol 172 (1-2) ◽  
pp. 73-84 ◽  
Author(s):  
D GARTNER ◽  
H HOFF ◽  
U GIMSA ◽  
G BURMESTER ◽  
M BRUNNERWEINZIERL
2021 ◽  
pp. 135245852110033
Author(s):  
Quentin Howlett-Prieto ◽  
Xuan Feng ◽  
John F Kramer ◽  
Kevin J Kramer ◽  
Timothy W Houston ◽  
...  

Objective: To determine the effect of long-term anti-CD20 B-cell-depleting treatment on regulatory T cell immune subsets that are subnormal in untreated MS patients. Methods: 30 clinically stable MS patients, before and over 38 months of ocrelizumab treatment, were compared to 13 healthy controls, 29 therapy-naïve MS, 9 interferon-β-treated MS, 3 rituximab-treated MS, and 3 rituximab-treated patients with other autoimmune inflammatory diseases. CD8, CD28, CD4, and FOXP3 expression in peripheral blood mononuclear cells was quantitated with flow cytometry. Results: CD8+ CD28− regulatory cells rose from one-third of healthy control levels before ocrelizumab treatment (2.68% vs 7.98%), normalized by 12 months (13.5%), and rose to 2.4-fold above healthy controls after 18 months of ocrelizumab therapy (19.0%). CD4+ FOXP3+ regulatory cells were lower in MS than in healthy controls (7.98%) and showed slight long-term decreases with ocrelizumab. CD8+ CD28− and CD4+ FOXP3+ regulatory T cell percentages in IFN-β-treated MS patients were between those of untreated MS and healthy controls. Interpretation: Long-term treatment with ocrelizumab markedly enriches CD8+ CD28− regulatory T cells and corrects the low levels seen in MS before treatment, while slightly decreasing CD4+ FOXP3+ regulatory T cells. Homeostatic enrichment of regulatory CD8 T cells provides a mechanism, in addition to B cell depletion, for the benefits of anti-CD20 treatment in MS.


2010 ◽  
Vol 38 (8) ◽  
pp. 1718-1725 ◽  
Author(s):  
Daniele C. Nascimento ◽  
José C. Alves-Filho ◽  
Fabiane Sônego ◽  
Sandra Y. Fukada ◽  
Marcelo S. Pereira ◽  
...  

2011 ◽  
Vol 91 (8) ◽  
pp. 908-915 ◽  
Author(s):  
Larry D. Bozulic ◽  
Yujie Wen ◽  
Hong Xu ◽  
Suzanne T. Ildstad

Author(s):  
DANSOKHO CIRA ◽  
A�d Saba ◽  
Chaingneau Thomas ◽  
Holzenberger Martin ◽  
Aucouturier Pierre ◽  
...  

Brain ◽  
2016 ◽  
Vol 139 (4) ◽  
pp. 1237-1251 ◽  
Author(s):  
Cira Dansokho ◽  
Dylla Ait Ahmed ◽  
Saba Aid ◽  
Cécile Toly-Ndour ◽  
Thomas Chaigneau ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2445-2445
Author(s):  
Shahram Y. Kordasti ◽  
Wendy Ingram ◽  
Janet Hayden ◽  
David Darling ◽  
Linda Barber ◽  
...  

Abstract Regulatory T-cells (Tregs) are important in the immune surveillance of malignancies. In MDS Tregs may inhibit effective immune responses against the dysplastic clone thereby facilitating disease progression. We studied the number (CD4+ and CD8+), function and clonality of CD4+Tregs in the peripheral blood of 75 MDS patients with different subtypes of MDS and 9 healthy volunteers as controls. The number of Tregs was also compared between different cytogenetic abnormalities. The phenotype of the expanded Tregs was analysed by assessment of the naïve vs memory subpopulations (CD25highFoxp3+CD27+CD45RO− and CD25highFoxp3+CD27+CD45RO+ respectively) in low and high risk MDS. The absolute number of CD4+CD25highFoxp3+ and CD4+/CD8+CD25+Foxp3+ was calculated. The median number of CD4+CD25highFoxp3+ Tregs in 5q-syndrome was 0.7×107/l (range, 0.2–2.2x107), Refractory Anemia (RA) 0.7×107/l (range, 0.5–1.6x107), Refractory Cytopenia with Multilineage Dysplasia (RCMD) 1.3×107/l (range, 0.2–2.6x107), Refractory Anemia with Excess Blast (RAEB) 2.2×107/l (range, 0.6–7.0x107) and Myelodysplastic/Myeloproliferative Disease (MDS/MPD) 3.1×107/l (range, 0.8–5.0x107). CD4+Tregs were higher in patients with ≥5% BM blasts vs <5% BM blasts (p<0.001), in high vs low/intermediate IPSS (p<0.001), disease progression vs stable disease (p<0.001). CD4+ Tregs were lower in 5q- syndrome, RCMD and RA. However, these did not differ significantly from normal controls (p=0.6), whereas RAEB and MDS/MPD had higher CD4+ Tregs than normal donors (p<0.001, p=0.02). The number of Tregs has also been correlated with cytogenetic abnormalities (based on IPSS definition). In patients with isolated 5q- Tregs were significantly lower than those with complex (p=0.004) or intermediate risk karyotypes (p<0.001). There was no difference in the number of CD8+ Tregs between MDS subtypes (p=0.28), IPSS (p=0.19), or disease progression (p=0.19). The percentage of naïve Tregs was significantly higher in high risk patients compared with low risk and healthy volunteers (p=0.032). The ratio of naïve to memory Tregs was also significantly higher in the high risk than low risk (p=0.016) or control groups (p=0.032). The spectratype of CD4+CD25+ TCR amplicons showed a polyclonal pattern and the overall complexity of Vβ spectratypes was not different between low and high risk group (p=0.54). By contrast the spectratype of CD8+Tcells was skewed on average in 6/24 Vβ subfamilies indicating the clonal expansion of these cells. Functionality of the expanded Tregs was demonstrated by inhibition of IFN-γ secretion by effector T-cells, confirmed by both intracellular staining and ELISA. We demonstrate that expansion of Tregs occurs frequently in high risk MDS and disease progression. By contrast, in low risk MDS the Treg population tends to be lower, thereby permitting the emergence of autoimmune responses. Although the increased number of Tregs in high IPSS MDS is an important indication of immune suppression, Karyotype and bone marrow blast percentage can influence the number of Tregs independently.


2018 ◽  
Vol 13 (11) ◽  
pp. 1760-1764 ◽  
Author(s):  
Paloma Leticia Martin-Moreno ◽  
Sudipta Tripathi ◽  
Anil Chandraker

The ability of the immune system to differentiate self from nonself is critical in determining the immune response to antigens expressed on transplanted tissue. Even with conventional immunosuppression, acceptance of the allograft is an active process often determined by the presence of regulatory T cells (Tregs). Tregs classically are CD4+ cells that constitutively express high levels of the IL-2 receptor α chain CD25, along with the transcription factor Foxp3. The use of Tregs in the field of solid organ transplantation is related specifically to the objective of achieving tolerance, with the goal of reducing or eliminating immunosuppressive drugs as well as maintaining tissue repair and managing acute rejection. A key issue in clinical use of Tregs is how to effectively expand the number of Tregs, either through increasing numbers of endogenous Tregs or by the direct infusion of exogenously expanded Tregs. In order to realize the benefits of Treg therapy in solid organ transplantation, a number of outstanding challenges need to be overcome, including assuring an effective expansion of Tregs, improving long-term Treg stability and reduction of risk-related to off-target, nonspecific, immunosuppressive effects related specially to cancer.


Sign in / Sign up

Export Citation Format

Share Document