Effects of interferon-beta therapy on innate and adaptive immune responses to the human endogenous retroviruses HERV-H and HERV-W, cytokine production, and the lectin complement activation pathway in multiple sclerosis

2009 ◽  
Vol 215 (1-2) ◽  
pp. 108-116 ◽  
Author(s):  
Thor Petersen ◽  
Anné Møller-Larsen ◽  
Steffen Thiel ◽  
Tomasz Brudek ◽  
Troels Krarup Hansen ◽  
...  
2011 ◽  
Vol 69 (2) ◽  
pp. 408-413 ◽  
Author(s):  
Matthias Mehling ◽  
Patricia Hilbert ◽  
Stefanie Fritz ◽  
Bojana Durovic ◽  
Dominik Eichin ◽  
...  

2006 ◽  
Vol 203 (5) ◽  
pp. 1371-1381 ◽  
Author(s):  
Erin Mehlhop ◽  
Michael S. Diamond

West Nile virus (WNV) causes a severe infection of the central nervous system in several vertebrate animals including humans. Prior studies have shown that complement plays a critical role in controlling WNV infection in complement (C) 3−/− and complement receptor 1/2−/− mice. Here, we dissect the contributions of the individual complement activation pathways to the protection from WNV disease. Genetic deficiencies in C1q, C4, factor B, or factor D all resulted in increased mortality in mice, suggesting that all activation pathways function together to limit WNV spread. In the absence of alternative pathway complement activation, WNV disseminated into the central nervous system at earlier times and was associated with reduced CD8+ T cell responses yet near normal anti-WNV antibody profiles. Animals lacking the classical and lectin pathways had deficits in both B and T cell responses to WNV. Finally, and somewhat surprisingly, C1q was required for productive infection in the spleen but not for development of adaptive immune responses after WNV infection. Our results suggest that individual pathways of complement activation control WNV infection by priming adaptive immune responses through distinct mechanisms.


2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Raphaëlle Riou ◽  
Céline Bressollette-Bodin ◽  
David Boutoille ◽  
Katia Gagne ◽  
Audrey Rodallec ◽  
...  

ABSTRACT Primary human cytomegalovirus (HCMV) infection usually goes unnoticed, causing mild or no symptoms in immunocompetent individuals. However, some rare severe clinical cases have been reported without investigation of host immune responses or viral virulence. In the present study, we investigate for the first time phenotypic and functional features, together with gene expression profiles in immunocompetent adults experiencing a severe primary HCMV infection. Twenty primary HCMV-infected patients (PHIP) were enrolled, as well as 26 HCMV-seronegative and 39 HCMV-seropositive healthy controls. PHIP had extensive lymphocytosis marked by massive expansion of natural killer (NK) and T cell compartments. Interestingly, PHIP mounted efficient innate and adaptive immune responses with a deep HCMV imprint, revealed mainly by the expansion of NKG2C+ NK cells, CD16+ Vδ2(−) γδ T cells, and conventional HCMV-specific CD8+ T cells. The main effector lymphocytes were activated and displayed an early immune phenotype that developed toward a more mature differentiated status. We suggest that both massive lymphocytosis and excessive lymphocyte activation could contribute to massive cytokine production, known to mediate tissue damage observed in PHIP. Taken together, these findings bring new insights into the comprehensive understanding of immune mechanisms involved during primary HCMV infection in immunocompetent individuals. IMPORTANCE HCMV-specific immune responses have been extensively documented in immunocompromised patients and during in utero acquisition. While it usually goes unnoticed, some rare severe clinical cases of primary HCMV infection have been reported in immunocompetent patients. However, host immune responses or HCMV virulence in these patients has not so far been investigated. In the present study, we show massive expansion of NK and T cell compartments during the symptomatic stage of acute HCMV infection. The patients mounted efficient innate and adaptive immune responses with a deep HCMV imprint. The massive lymphocytosis could be the result of nonadapted or uncontrolled immune responses limiting the effectiveness of the specific responses mounted. Both massive lymphocytosis and excessive lymphocyte activation could contribute to massive cytokine production, known to mediate tissue damage. Furthermore, we cannot exclude a delayed immune response caused by immune escape established by HCMV strains.


2017 ◽  
Vol 312 (3) ◽  
pp. H349-H354 ◽  
Author(s):  
Ulrich O. Wenzel ◽  
Marlies Bode ◽  
Jörg Köhl ◽  
Heimo Ehmke

The self-amplifying cascade of messenger and effector molecules of the complement system serves as a powerful danger-sensing system that protects the host from a hostile microbial environment, while maintaining proper tissue and organ function through effective clearance of altered or dying cells. As an important effector arm of innate immunity, it also plays important roles in the regulation of adaptive immunity. Innate and adaptive immune responses have been identified as crucial players in the pathogenesis of arterial hypertension and hypertensive end organ damage. In line with this view, complement activation may drive the pathology of hypertension and hypertensive injury through its impact on innate and adaptive immune responses. It is well known that complement activation can cause tissue inflammation and injury and complement-inhibitory drugs are effective treatments for several inflammatory diseases. In addition to these proinflammatory properties, complement cleavage fragments of C3 and C5 can exert anti-inflammatory effects that dampen the inflammatory response to injury. Recent experimental data strongly support a role for complement in arterial hypertension. The remarkably similar clinical and histopathological features of malignant nephrosclerosis and atypical hemolytic uremic syndrome, which is driven by complement activation, suggest a role for complement also in the development of malignant nephrosclerosis. Herein, we will review canonical and noncanonical pathways of complement activation as the framework to understand the multiple roles of complement in arterial hypertension and hypertensive end organ damage.


2010 ◽  
Vol 69 (7) ◽  
pp. 694-703 ◽  
Author(s):  
Johannes M. van Noort ◽  
Malika Bsibsi ◽  
Wouter H. Gerritsen ◽  
Paul van der Valk ◽  
Jeffrey J. Bajramovic ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Haixia Li ◽  
Shan Liu ◽  
Jinming Han ◽  
Shengxian Li ◽  
Xiaoyan Gao ◽  
...  

Toll-like receptors (TLRs) are a class of proteins playing a key role in innate and adaptive immune responses. TLRs are involved in the development and progression of neuroimmune diseases via initiating inflammatory responses. Thus, targeting TLRs signaling pathway may be considered as a potential therapy for neuroimmune diseases. However, the role of TLRs is elusive and complex in neuroimmune diseases. In addition to the inadequate immune response of TLRs inhibitors in the experiments, the recent studies also demonstrated that partial activation of TLRs is conducive to the production of anti-inflammatory factors and nervous system repair. Exploring the mechanism of TLRs in neuroimmune diseases and combining with developing the emerging drug may conquer neuroimmune diseases in the future. Herein, we provide an overview of the role of TLRs in several neuroimmune diseases, including multiple sclerosis, neuromyelitis optica spectrum disorder, Guillain-Barré syndrome and myasthenia gravis. Emerging difficulties and potential solutions in clinical application of TLRs inhibitors will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document