scholarly journals Pore-Scale Analysis of Condensate Blockage Mitigation by Wettability Alteration

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4673
Author(s):  
Paula K. P. Reis ◽  
Marcio S. Carvalho

Liquid banking in the near wellbore region can lessen significantly the production from gas reservoirs. As reservoir rocks commonly consist of liquid-wet porous media, they are prone to liquid trapping following well liquid invasion and/or condensate dropout in gas-condensate systems. For this reason, wettability alteration from liquid to gas-wet has been investigated in the past two decades as a permanent gas flow enhancement solution. Numerous experiments suggest flow improvement for immiscible gas-liquid flow in wettability altered cores. However, due to experimental limitations, few studies evaluate the method’s performance for condensing flows, typical of gas-condensate reservoirs. In this context, we present a compositional pore-network model for gas-condensate flow under variable wetting conditions. Different condensate modes and flow patterns based on experimental observations were implemented in the model so that the effects of wettability on condensing flow were represented. Flow analyses under several thermodynamic conditions and flow rates in a sandstone based network were conducted to determine the parameters affecting condensate blockage mitigation by wettability alteration. Relative permeability curves and impacts factors were calculated for gas flowing velocities between 7.5 and 150 m/day, contact angles between 45° and 135°, and condensate saturations up to 35%. Significantly different relative permeability curves were obtained for contrasting wettability media and impact factors below one were found at low flowing velocities in preferentially gas-wet cases. Results exhibited similar trends observed in coreflooding experiments and windows of optimal flow enhancement through wettability alteration were identified.

1973 ◽  
Vol 13 (04) ◽  
pp. 221-232 ◽  
Author(s):  
N.R. Morrow ◽  
P.J. Cram ◽  
F.G. McCaffery

Abstract Various nitrogen-, oxygen- and sulfur-containing compounds native to crude oils were screened for their effect on wettability as measured by contact angle. Solid substrates of quartz, calcite, and dolomite crystals were used to represent reservoir rock surfaces. With water and decane as liquids, contact angles were measured after a given polar compound was added to the oil phase. Contact angles measured at the two types of carbonate surfaces were generally similar. None of the nitrogen or sulfur compounds studied gave contact angles greater than 66 degrees on either quartz or carbonates. Of the oxygen-containing compounds, octanoic acid gave the widest range of contact angle - 0 degrees to 145 degrees on dolomite - over a molar concentration range up to 0.1. Capillary - pressure and relative-permeability curves were obtained for water and solutions of octanoic acid in oil, using packings of powdered dolomite as the porous medium. Because of a slow reaction between dolomite and octanoic acid, which was not revealed by standard contact angle studies, special precautions were needed to ensure satisfactory wettability control during displacement tests. Capillary-pressure drainage curves were measured at six contact angles, ranging from 0 degrees to 140 degrees. Drainage-imbibition cycles for three packings of distinctly different particle size were measured at contact angles of 0 degrees and 49 degrees. The effect of contact angle on imbibition capillary pressures was close to that found previously for porous polytetra-fluoroethylene, whereas there was comparatively polytetra-fluoroethylene, whereas there was comparatively less effect on drainage behavior-steady-state relative permeability curves exhibited distinct differences for contact angles of 15 degrees, 100 degrees and 155 degrees. Introduction Waterflooding is the most successful and widely applied improved recovery technique. Its application in Alberta has, on the average, more than doubled the recovery obtained by primary depletion. However, even after waterflooding, it is estimated that two-thirds of the discovered oil remains unrecovered. Interfacial forces acting during waterflooding lead to the entrapment of large quantities of residual oil in the swept zones. Considerable attention has been paid to recovering this oil through new recovery methods in which the interface is eliminated as in miscible processes, or the interfacial tension is drastically lowered, as in surfactant floods. Such processes involve a high initial cost for an injected solvent or surfactant bank. Recently released information on a variety of such improved recovery techniques has not been altogether encouraging with regard to developing economical processes. A distinct alternative to eliminating the interface is to understand it and learn how it can be manipulated to give increased waterflood recoveries. A prospect for improved recovery at interfacial tensions of the order normally encountered in reservoirs lies in a favorable adjustment of wettability by incorporating small amounts of low-cost additives in the floodwater. A first step in developing the technology of improved recovery by wettability alteration is to determine the effect of wettability alteration on displacement in systems of uniform wettability. It has been shown that, even in the "near miscible" surfactant processes, wettability can still have a significant influence on the extent to which interfacial tension must be lowered in order to mobilize residual oil. At the time when waterflooding first found widespread use, wettability was recognized as a variable that might well have a significant influence on recovery performance. Reservoir wettability and the role of wettability in displacement has been the subject of some 50 or so publications. Even so, many aspects of wettability are not well understood and there is no general agreement on a satisfactory method of characterizing it. Opinions as to the optimum wettability condition for recovery cover the spectrum from strongly water-wet through weakly water-wet or intermediately wet to strongly oil-wet. It has recently been suggested that a mixed wettability condition can give high ultimate recoveries. SPEJ P. 221


2019 ◽  
Vol 62 ◽  
pp. 214-223 ◽  
Author(s):  
Seyed-Ahmad Hoseinpour ◽  
Mehdi Madhi ◽  
Hamidreza Norouzi ◽  
Bahram Soltani Soulgani ◽  
Amir H. Mohammadi

2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Bander N. Al Ghamdi ◽  
Luis F. Ayala H.

Gas-condensate productivity is highly dependent on the thermodynamic behavior of the fluids-in-place. The condensation attendant with the depletion of gas-condensate reservoirs leads to a deficiency in the flow of fluids moving toward the production channels. The impairment is a result of condensate accumulation near the production channels in an immobility state until reaching a critical saturation point. Considering the flow phenomenon of gas-condensate reservoirs, tight formations can be inevitably complex hosting environments in which to achieve economical production. This work is aimed to assess the productivity gas-condensate reservoirs in a naturally fractured setting against the effect of capillary pressure and relative permeability constraints. The severity of condensate coating and magnitude of impairment was evaluated in a system with a permeability of 0.001 mD using an in-house compositional simulator. Several composition combinations were considered to portray mixtures ascending in complexity from light to heavy. The examination showed that thicker walls of condensate and greater impairment are attained with mixture containing higher nonvolatile concentrations. In addition, the influence of different capillary curves was insignificant to the overall behavior of fluids-in-place and movement within the pores medium. A greater impact on the transport of fluids was owed to relative permeability curves, which showed dependency on the extent of condensate content. Activating diffusion was found to diminish flow constraints due to the capturing of additional extractions that were not accounted for under Darcy's law alone.


Author(s):  
Pouriya Esmaeilzadeh ◽  
Mohammad Taghi Sadeghi ◽  
Alireza Bahramian

Many gas condensate reservoirs suffer a loss in productivity owing to accumulation of liquid in near-wellbore region. Wettability alteration of reservoir rock from liquid-wetting to gas-wetting appears to be a promising technique for elimination of the condensate blockage. In this paper, we report use of a superamphiphobic nanofluid containing TiO2 nanoparticles and low surface energy materials as polytetrafluoroethylene and trichloro(1H,1H,2H,2H-perfluorooctyl)silane to change the wettability of the carbonate reservoir rock to ultra gas-wetting. The utilization of nanofluid in the wettability alteration of carbonate rocks to gas-wetting in core scale has not been reported already and is still an ongoing issue. Contact angle measurements was conducted to investigate the wettability of carbonate core plugs in presence of nanofluid. It was found that the novel formulated nanofluid used in this work can remarkably change the wettability of the rock from both strongly water- and oil-wetting to highly gas-wetting condition. The adsorption of nanoparticles on the rock and formation of nano/submicron surface roughness was verified by Scanning Electron Microscope (SEM) and Stylus Profilometer (SP) analyses. Using free imbibition test, we showed that the nanofluid can imbibe interestingly into the core sample, resulting in notable ultimate gas-condensate liquid recovery. Moreover, we studied the effect of nanofluid on relative permeability and recovery performance of gas/water and gas/oil systems for a carbonate core. The result of coreflooding tests demonstrates that the relative permeability of both gas and liquid phase increased significantly as well as the liquid phase recovery enhanced greatly after the wettability alteration to gas-wetting.


2021 ◽  
Author(s):  
Mohammad Sedaghat ◽  
Hossein Dashti

Abstract Wettability is an essential component of reservoir characterization and plays a crucial role in understanding the dominant mechanisms in enhancing recovery from oil reservoirs. Wettability affects oil recovery by changing (drainage and imbibition) capillary pressure and relative permeability curves. This paper aims to investigate the role of wettability in matrix-fracture fluid transfer and oil recovery in naturally fractured reservoirs. Two experimental micromodels and one geological outcrop model were selected for this study. Three relative permeability and capillary pressure curves were assigned to study the role of matrix wettability. Linear relative permeability curves were given to the fractures. A complex system modelling platform (CSMP++) has been used to simulate water and polymer flooding in different wettability conditions. Comparing the micromodel data, CSMP++ and Eclipse validated and verified CSMP++. Based on the results, the effect of wettability alteration during water flooding is stronger than in polymer flooding. In addition, higher matrix-to-fracture permeability ratio makes wettability alteration more effective. The results of this study revealed that although an increase in flow rate decreases oil recovery in water-wet medium, it is independent of flow rate in the oil-wet system. Visualized data indicated that displacement mechanisms are different in oil-wet, mixed-wet and water-wet media. Earlier fracture breakthrough, later matrix breakthrough and generation and swelling of displacing phase at locations with high horizontal permeability contrast are the most important features of enhanced oil recovery in naturally fractured oil-wet rocks.


2011 ◽  
Author(s):  
Syed Furqan Hassan Gilani ◽  
Mukul Mani Sharma ◽  
David Enrique Torres ◽  
Mohabbat Ahmadi ◽  
Gary Arnold Pope ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document