Natural gas accumulation processes of tight sandstone reservoirs in deep formations of Songliao Basin, NE China

2020 ◽  
Vol 83 ◽  
pp. 103610
Author(s):  
Zhengjian Xu ◽  
Shu Jiang ◽  
Luofu Liu ◽  
Kangjun Wu ◽  
Rong Li ◽  
...  
2013 ◽  
Vol 295-298 ◽  
pp. 2736-2739
Author(s):  
Hai Yan Hu

Overpressure is often encountered in the Jurassic tight and the overpressure is closely associated with gas generation. The pressure transfer from the over-pressurized mudstones to adjacent tight sandstones might occur through overpressure induced-fractures. The fine-grained coal containing Jurassic sandstone is sensitive to compaction, and the porosity decreases dramatically with the increase of overlying load. As gas migrates into the tight sandstones, it must overcome the capillary pressure which is greater than the hydrostatic pressure. The gas charging pressure in the tight sandstone must be higher than the capillary pressure, resulting in an overpressure buildup within the tight sandstones. Gas shows, low permeability and strong diagenesis in the overpressure of the tight sandstone system have been observed. Additionally, capillary seals are identified as playing an important role in the mechanism of the overpressure formation in tight sandstone reservoirs. Overpressure might be a driving force to create induced fractures in the interval, which has applications for crossing-formation migration and gas accumulation.


2013 ◽  
Vol 652-654 ◽  
pp. 2478-2483
Author(s):  
Xue Juan Zhang ◽  
Shuang Fang Lu ◽  
Wei Huang ◽  
Lei Zhang

This paper makes systematic analysis of geological factors of natural gas accumulation in Denglouku formation of Gulong-Changjiaweizi region, including reservoir characteristics, gas source condition, source-reservoir relationship, structural condition, etc. It turned out that K1d2 in Gulong-Changjiaweizi region is generally typical tight sandstone reservoir with low porosity and permeability due to the poor physical properties. The gas source rock of K1d2 formation has larger gas producing capacity.The relationship between source rock and reservoir shows as interbed interfinger or directly contiguity contact, which is beneficial for large-area gas accumulation. The gas generation area of source rock in this region is always in the center and slow downdip direction of Gulong depression with a smaller dip angle on the adjacent tight sandstone reservoir, where faults are rare. The result of comprehensive analysis shows that K1d2 formation in Nothern Songliao Basin and its neighboring layers could be considered as a favorable target of the tight gas reservoir study in Northern Songliao Basin due to its favorable geological conditions of deep basin tight gas reservoir generation, such as tight reservoir, sufficient gas source, communicating source-reservoir relationship and constant flattened structure.


2015 ◽  
Vol 42 (5) ◽  
pp. 646-655 ◽  
Author(s):  
Yu SUN ◽  
Ming DENG ◽  
Shizhong MA ◽  
Yuming CHEN ◽  
Limin YU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document