Methanogenesis in the Eocene Tharad lignite deposits of Sanchor Sub-Basin, Gujarat, India: Insights from gas molecular ratio and stable carbon isotopic compositions

2021 ◽  
Vol 91 ◽  
pp. 103970
Author(s):  
Subir Dutta ◽  
Santanu Ghosh ◽  
Atul Kumar Varma
2012 ◽  
Vol 12 (4) ◽  
pp. 9079-9124
Author(s):  
P. Q. Fu ◽  
K. Kawamura ◽  
J. Chen ◽  
J. Li ◽  
Y. L. Sun ◽  
...  

Abstract. Organic tracer compounds of tropospheric aerosols, as well as organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and stable carbon isotope ratios (δ13C) of total carbon (TC) have been investigated for aerosol samples collected during early and late periods of Mount Tai eXperiment 2006 (MTX2006) field campaign in North China Plain. Total solvent extracts were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA) tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs). In early June when the field burning activities of wheat straws in North China Plain were very active, the total identified organics (2090 ± 1170 ng m−3) were double those in late June (926 ± 574 ng m−3). All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88–1210 ng m−3, 403 ng m−3) was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude and then transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 24% (up to 64%) of the OC in the Mt. Tai aerosols was due to biomass burning in early June, followed by the contribution of isoprene SOC (mean 4.3%). In contrast, isoprene SOC was the main contributor (6.6%) to OC, and only 3.0% of the OC was due to biomass burning in late June. In early June, δ13C of TC (−26.6‰ to −23.2‰, mean −25.0‰) were lower than those (−23.9‰ to −21.9‰, mean −22.9‰) in late June. In addition, a strong anti-correlation was found between levoglucosan and δ13C values. This study demonstrates that crop-residue burning activities can significantly enhance the organic aerosol loading and alter the organic molecular compositions and stable carbon isotopic compositions of aerosol particles in the troposphere over North China Plain.


2010 ◽  
Vol 24 (11) ◽  
pp. 1625-1628 ◽  
Author(s):  
Li Li ◽  
Shihuai Deng ◽  
Wu Wang ◽  
Huaijian Li ◽  
Xiaohong Zhang ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Lujie Ren ◽  
Pingqing Fu ◽  
Yue He ◽  
Juzhi Hou ◽  
Jing Chen ◽  
...  

2008 ◽  
Vol 39 (12) ◽  
pp. 1725-1734 ◽  
Author(s):  
Susumu Sakata ◽  
John M. Hayes ◽  
Michel Rohmer ◽  
Alan B. Hooper ◽  
Myriam Seemann

Sign in / Sign up

Export Citation Format

Share Document