Real-time prediction of in-situ stresses while drilling using surface drilling parameters from gas reservoir

Author(s):  
Ahmed Farid Ibrahim ◽  
Ahmed Gowida ◽  
Abdulwahab Ali ◽  
Salaheldin Elkatatny
2015 ◽  
Author(s):  
Manhal Sirat ◽  
Mujahed Ahmed ◽  
Xing Zhang

Abstract In-situ stress state plays an important role in controlling fracture growth and containment in hydraulic fracturing managements. It is evident that the mechanical properties, existing stress regime and the natural fracture network of its reservoir rocks and the surrounding formations mainly control the geometry, size and containments of produced hydraulic fractures. Furthermore, the three principal in situ stresses' axes swap directions and magnitudes at different depths giving rise to identifying different mechanical bedrocks with corresponding stress regimes at different depths. Hence predicting the hydro-fractures can be theoretically achieved once all the above data are available. This is particularly difficult in unconventional and tight carbonate reservoirs, where heterogeneity and highly stress variation, in terms of magnitude and orientation, are expected. To optimize the field development plan (FDP) of a tight carbonate gas reservoir in Abu Dhabi, 1D Mechanical Earth Models (MEMs), involving generating the three principal in-situ stresses' profiles and mechanical property characterization with depth, have been constructed for four vertical wells. The results reveal the swap of stress magnitudes at different mechanical layers, which controls the dimension and orientation of the produced hydro-fractures. Predicted containment of the Hydro-fractures within the specific zones is likely with inevitable high uncertainty when the stress contrast between Sv, SHmax with Shmin respectively as well as Young's modulus and Poisson's Ratio variations cannot be estimated accurately. The uncertainty associated with this analysis is mainly related to the lacking of the calibration of the stress profiles of the 1D MEMs with minifrac and/or XLOT data, and both mechanical and elastic properties with rock mechanic testing results. This study investigates the uncertainty in predicting hydraulic fracture containment due to lacking such calibration, which highlights that a complete suite of data, including calibration of 1D MEMs, is crucial in hydraulic fracture treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Osama Siddig ◽  
Hany Gamal ◽  
Salaheldin Elkatatny ◽  
Abdulazeez Abdulraheem

AbstractRock elastic properties such as Poisson’s ratio influence wellbore stability, in-situ stresses estimation, drilling performance, and hydraulic fracturing design. Conventionally, Poisson’s ratio estimation requires either laboratory experiments or derived from sonic logs, the main concerns of these methods are the data and samples availability, costs, and time-consumption. In this paper, an alternative real-time technique utilizing drilling parameters and machine learning was presented. The main added value of this approach is that the drilling parameters are more likely to be available and could be collected in real-time during drilling operation without additional cost. These parameters include weight on bit, penetration rate, pump rate, standpipe pressure, and torque. Two machine learning algorithms were used, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To train and test the models, 2905 data points from one well were used, while 2912 data points from a different well were used for model validation. The lithology of both wells contains carbonate, sandstone, and shale. Optimization on different tuning parameters in the algorithm was conducted to ensure the best prediction was achieved. A good match between the actual and predicted Poisson’s ratio was achieved in both methods with correlation coefficients between 0.98 and 0.99 using ANN and between 0.97 and 0.98 using ANFIS. The average absolute percentage error values were between 1 and 2% in ANN predictions and around 2% when ANFIS was used. Based on these results, the employment of drilling data and machine learning is a strong tool for real-time prediction of geomechanical properties without additional cost.


2013 ◽  
Vol 5 (1) ◽  
pp. 767-788 ◽  
Author(s):  
K. Fischer ◽  
A. Henk

Abstract. The optimal use of conventional and unconventional hydrocarbon reservoirs depends, amongst others, on the local tectonic stress field. For example, wellbore stability, orientation of hydraulically induced fractures and – especially in fractured reservoirs – permeability anisotropies are controlled by the recent in situ stresses. Faults and lithological changes can lead to stress perturbations and produce local stresses that can significantly deviate from the regional stress field. Geomechanical reservoir models aim for a robust, ideally "pre-drilling" prediction of the local variations in stress magnitude and orientation. This requires a~numerical modelling approach that is capable to incorporate the specific geometry and mechanical properties of the subsurface reservoir. The workflow presented in this paper can be used to build 3-D geomechanical models based on the Finite Element Method (FEM) and ranging from field-scale models to smaller, detailed submodels of individual fault blocks. The approach is successfully applied to an intensively faulted gas reservoir in the North German Basin. The in situ stresses predicted by the geomechanical FE model were calibrated against stress data actually observed, e.g. borehole breakouts and extended leak-off tests. Such a validated model can provide insights into the stress perturbations in the inter-well space and undrilled parts of the reservoir. In addition, the tendency of the existing fault network to slip or dilate in the present-day stress regime can be addressed.


Solid Earth ◽  
2013 ◽  
Vol 4 (2) ◽  
pp. 347-355 ◽  
Author(s):  
K. Fischer ◽  
A. Henk

Abstract. The optimal use of conventional and unconventional hydrocarbon reservoirs depends, amongst other things, on the local tectonic stress field. For example, wellbore stability, orientation of hydraulically induced fractures and – especially in fractured reservoirs – permeability anisotropies are controlled by the present-day in situ stresses. Faults and lithological changes can lead to stress perturbations and produce local stresses that can significantly deviate from the regional stress field. Geomechanical reservoir models aim for a robust, ideally "pre-drilling" prediction of the local variations in stress magnitude and orientation. This requires a numerical modelling approach that is capable to incorporate the specific geometry and mechanical properties of the subsurface reservoir. The workflow presented in this paper can be used to build 3-D geomechanical models based on the finite element (FE) method and ranging from field-scale models to smaller, detailed submodels of individual fault blocks. The approach is successfully applied to an intensively faulted gas reservoir in the North German Basin. The in situ stresses predicted by the geomechanical FE model were calibrated against stress data actually observed, e.g. borehole breakouts and extended leak-off tests. Such a validated model can provide insights into the stress perturbations in the inter-well space and undrilled parts of the reservoir. In addition, the tendency of the existing fault network to slip or dilate in the present-day stress regime can be addressed.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 251
Author(s):  
Liqin Ding ◽  
Zhiqiao Wang ◽  
Jianguo Lv ◽  
Yu Wang ◽  
Baolin Liu

Severe wellbore stability issues were reported while drilling in laminated formation with weak planes such as beddings. To accurately determine the safe mud weight according to the changing environment is of primary importance for safety control of drilling. Considering both the elastic and strength anisotropy of bedding formation, a novel theoretical model is established and the stress and failure around wellbores are analyzed. The accuracy and applicability of the theoretical model is verified by in situ field data. For the purpose of fulfilling real-time prediction, the method flowchart of programming is also provided. The results show that the model built can be conveniently used to predict the stress distribution, failure area, and collapse and fracture pressure while drilling, and rather good predictions can be made compared to real field data. In addition, the inhomogeneity of in situ stress and elastic parameters affect the upper limit of the safe mud weight window (SMWW) greater than the lower limit. Negative SMWW may appear with the direction change of the wellbore or weak plane, especially when the azimuths of them change. As to the magnitude of SMWW, the anisotropic effects of Young’s modulus are greater than the Poisson’s ratio. The method established in this paper can greatly help with the precise prediction of wellbore stability as drilling proceeds in bedding formation.


2015 ◽  
Vol 892 ◽  
pp. 148-152 ◽  
Author(s):  
Silvère André ◽  
Lydia Saint Cristau ◽  
Sabine Gaillard ◽  
Olivier Devos ◽  
Éric Calvosa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document