Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations

2012 ◽  
Vol 173-174 ◽  
pp. 72-86 ◽  
Author(s):  
Birte Domnik ◽  
Shiva P. Pudasaini
2021 ◽  
Vol 249 ◽  
pp. 02011
Author(s):  
Daisuke Ishima ◽  
Hisao Hayakawa

We perform numerical simulations of a two-dimensional frictional granular system under oscillatory shear confined by constant pressure. We found that the system undergoes dilatancy as the strain increases. We confirmed that compaction also takes place at an intermediate strain amplitude for a small mutual friction coefficient between particles. We also found that compaction depends on the confinement pressure while dilatancy little depends on the pressure.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qun Ma ◽  
Yu Li ◽  
Rongsheng Wang ◽  
Hongquan Xu ◽  
Qiujiao Du ◽  
...  

AbstractFunction elements (FE) are vital components of nanochannel-systems for artificially regulating ion transport. Conventionally, the FE at inner wall (FEIW) of nanochannel−systems are of concern owing to their recognized effect on the compression of ionic passageways. However, their properties are inexplicit or generally presumed from the properties of the FE at outer surface (FEOS), which will bring potential errors. Here, we show that the FEOS independently regulate ion transport in a nanochannel−system without FEIW. The numerical simulations, assigned the measured parameters of FEOS to the Poisson and Nernst-Planck (PNP) equations, are well fitted with the experiments, indicating the generally explicit regulating-ion-transport accomplished by FEOS without FEIW. Meanwhile, the FEOS fulfill the key features of the pervious nanochannel systems on regulating-ion-transport in osmotic energy conversion devices and biosensors, and show advantages to (1) promote power density through concentrating FE at outer surface, bringing increase of ionic selectivity but no obvious change in internal resistance; (2) accommodate probes or targets with size beyond the diameter of nanochannels. Nanochannel-systems with only FEOS of explicit properties provide a quantitative platform for studying substrate transport phenomena through nanoconfined space, including nanopores, nanochannels, nanopipettes, porous membranes and two-dimensional channels.


2013 ◽  
Vol 380-384 ◽  
pp. 1143-1146
Author(s):  
Xiang Guo Liu

The paper researches the parametric inversion of the two-dimensional convection-diffusion equation by means of best perturbation method, draw a Numerical Solution for such inverse problem. It is shown by numerical simulations that the method is feasible and effective.


Soft Matter ◽  
2022 ◽  
Author(s):  
Aile Sun ◽  
Yinqiao Wang ◽  
Yangrui Chen ◽  
Jin Shang ◽  
Jie Zheng ◽  
...  

We perform a systematic experimental study to investigate the velocity fluctuations in the two-dimensional granular matter of low and high friction coefficients subjected to cyclic shear of a range of...


2021 ◽  
Vol 104 (1) ◽  
Author(s):  
M. I. González-Flores ◽  
A. A. Torres ◽  
W. Lebrecht ◽  
A. J. Ramirez-Pastor

Sign in / Sign up

Export Citation Format

Share Document