granular system
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 41)

H-INDEX

22
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7274
Author(s):  
Marlon Ivan Valerio-Cuadros ◽  
Davi Araujo Dalbuquerque Chaves ◽  
Fabiano Colauto ◽  
Ana Augusta Mendonça de Oliveira ◽  
Antônio Marcos Helgueira de Andrade ◽  
...  

Granularity is one of the main features restricting the maximum current which a superconductor can carry without losses, persisting as an important research topic when applications are concerned. To directly observe its effects on a typical thin superconducting specimen, we have modeled the simplest possible granular system by fabricating a single artificial weak-link in the center of a high-quality Nb film using the focused ion beam technique. Then, its microstructural, magnetic, and electric properties in both normal and superconducting states were studied. AC susceptibility, DC magnetization, and magneto-transport measurements reveal well-known granularity signatures and how they negatively affect superconductivity. Moreover, we also investigate the normal state electron scattering mechanisms in the Boltzmann theory framework. The results clearly demonstrate the effect of the milling technique, giving rise to an additional quadratic-in-temperature contribution to the usual cubic-in-temperature sd band scattering for the Nb film. Finally, by analyzing samples with varying density of incorporated defects, the emergence of the additional contribution is correlated to a decrease in their critical temperature, in agreement with recent theoretical results.


2021 ◽  
Vol 7 (11) ◽  
pp. 246
Author(s):  
Axel Henningsson ◽  
Stephen A. Hall

A mathematical framework and accompanying numerical algorithm exploiting the continuity equation for 4D reconstruction of spatiotemporal attenuation fields from multi-angle full-field transmission measurements is presented. The algorithm is geared towards rotation-free dynamic multi-beam X-ray tomography measurements, for which angular information is sparse but the temporal information is rich. 3D attenuation maps are recovered by propagating an initial discretized density volume in time according to the advection equations using the Finite Volumes method with a total variation diminishing monotonic upstream-centered scheme (TVDMUSCL). The benefits and limitations of the algorithm are explored using dynamic granular system phantoms modelled via discrete elements and projected by an analytical ray model independent from the numerical ray model used in the reconstruction scheme. Three phantom scenarios of increasing complexity are presented and it is found that projections from only a few (unknowns:equations > 10) angles can be sufficient for characterisation of the 3D attenuation field evolution in time. It is shown that the artificial velocity field produced by the algorithm sub-iteration, which is used to propagate the attenuation field, can to some extent approximate the true kinematics of the system. Furthermore, it is found that the selection of a temporal interpolation scheme for projection data can have a significant impact on error build up in the reconstructed attenuation field.


Author(s):  
I.S. Andrianova ◽  
O.I. Gerasimov ◽  
V.V. Kuryatnikov ◽  
A.Ya Spivak

Composing the programs for the education of specialists in the field of environmental protection requires clear ideas about the concepts, place of basic disciplines and the main issues of the future specialty. Peculiarities of methodological aspects of description of levels and assessment of quality of education in terminology of competences and learning outcomes are considered. They consist in the predominance of competencies, that have a physical meaning and ensure the filling of the "core" of the educational program with physical principles, methods and models. The study of polluting processes in natural objects requires knowledge of the physics of aerodisperse systems in connection with the solution of aerosol emissions into the atmosphere, knowledge of the physics of the dispersible silt-covered upcasts into the aquatic environment, knowledge and understanding of physical phenomena of heat and mass transfer processes in soil, as in the granular system, knowledge of the physics of external radiation, including sound, heat, electromagnetic, in particular, ionizing radiation, and their impact on the environment. Peculiarities of the educational system of training specialists in the field of environmental protection take into account the tasks of systemic radioecology, among which the tasks of radiation monitoring are especially important. The conceptual approach to the study of radioecology is proposed not as a whole, mixing the laws of physics, chemistry and, for example, biology, but by individual branches, and systematically.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Ledesma-Motolinía ◽  
J. L. Carrillo-Estrada ◽  
F. Donado

AbstractWe study the crystallisation processes occurring in a nonvibrating two-dimensional magnetic granular system at various fixed values of the effective temperature. In this system, the energy loss due to dissipative effects is compensated by the continuous energy input coming into the system from a sinusoidal magnetic field. When this balance leads to high values of the effective temperature, no aggregates are formed, because particles’ kinetic energy prevents them from aggregating. For lower effective temperatures, formation of small aggregates is observed. The smaller the values of the applied field’s amplitude, the larger the number of these disordered aggregates. One also observes that when clusters form at a given effective temperature, the average effective diffusion coefficient decreases as time increases. For medium values of the effective temperature, formation of small crystals is observed. We find that the sixth bond-orientational order parameter and the number of bonds, when considering more than two, are very sensitive for exhibiting the order in the system, even when crystals are still very small.


2021 ◽  
Vol 43 (3) ◽  
pp. 161-169
Author(s):  
S. V. Mykulyak ◽  
V. V. Kulich ◽  
S. I. Skurativskyi

In recent research, the dynamics of the medium located in the seismic region at the boundary of tectonic plates is considered as the behavior of a complex open system that is in a state of self-organized criticality. Such an approach results from the very laws of earthquake generation and the complex structure of these areas. The network of faults and cracks makes seismic zones significantly heterogeneous and fragmented. Therefore, discrete models are increasingly used to model the dynamics of these media. The basis for comparing the model and the full-scale object serves the statistical regularities of their dynamic deformation. Relying on this concept, in the paper it is modeled the shear dynamics of a granular massif composed of identical cubic granules and is compared system’s statistical characteristics with the similar characteristics obtained for the earthquake generation zone. Shear deformation is carried out by means of the box consisting of two parts — movable and immovable ones. The movable part possesses the cover which receives kinetic energy from the granular massif in the process of shear deformation. For numerical simulations of the shear dynamics, the discrete element method is applied. The numerical calculations result in the distribution of cover’s kinetic energy jumps simulating the perturbations transmitted from the granular system to an external medium. It turned out that the distribution for these perturbations is the power dependence with an exponent that is inherent in earthquakes (Gutenberg-Richter law). Before and after large perturbations it is observed the swarms of smaller perturbations which are the analogues of foreshocks and aftershocks. The distributions of element’s velocity fluctuations and the correlation of velocity fluctuations are calculated as well. It is revealed the similarity of distributions for velocity fluctuations in the model massif and in the seismically active region of California, which includes the San Andreas fault. Moreover, the similarity of corresponding correlation functions is shown. They both are the functions of the stretched exponent. The obtained result indicates that shear processes in granular massifs and natural seismic processes in the San Andreas Fault are statistically similar.


2021 ◽  
Vol 11 (14) ◽  
pp. 6278
Author(s):  
Mengmeng Wu ◽  
Jianfeng Wang

The inhomogeneous distribution of contact force chains (CFC) in quasi-statically sheared granular materials dominates their bulk mechanical properties. Although previous micromechanical investigations have gained significant insights into the statistical and spatial distribution of CFC, they still lack the capacity to quantitatively estimate CFC evolution in a sheared granular system. In this paper, an artificial neural network (ANN) based on discrete element method (DEM) simulation data is developed and applied to predict the anisotropy of CFC in an assembly of spherical grains undergoing a biaxial test. Five particle-scale features including particle size, coordination number, x- and y-velocity (i.e., x and y-components of the particle velocity), and spin, which all contain predictive information about the CFC, are used to establish the ANN. The results of the model prediction show that the combined features of particle size and coordination number have a dominating influence on the CFC’s estimation. An excellent model performance manifested in a close match between the rose diagrams of the CFC from the ANN predictions and DEM simulations is obtained with a mean accuracy of about 0.85. This study has shown that machine learning is a promising tool for studying the complex mechanical behaviors of granular materials.


Friction ◽  
2021 ◽  
Author(s):  
Xuejie Zhang ◽  
Wei Sun ◽  
Wei Wang ◽  
Kun Liu

AbstractGranular friction behaviors are crucial for understanding the ubiquitous packing and flow phenomena in nature and industrial production. In this study, a customized experimental apparatus that can simultaneously measure the time history of normal and tangential forces on the inside-shearing unit is employed to investigate the granular friction behaviors during a linear reciprocating sliding process. It is observed that the evolution behaviors of two normal forces distributed separately on the shearing unit can qualitatively reflect the effects of the force chain network. During the half-loop of the reciprocating sliding, the total normal force, which indicates the load-bearing capacity of the granular system, experiences the following typical stages: decreases abruptly and stabilizes momentarily, further decreases significantly to the minimum, gradually increases to the maximum, and then remains stable. These stages are associated closely with the relaxation, collapse, reconstruction, and stabilization of the force chain, respectively. Interestingly, the coefficient of friction (COF) can reach a stable value rapidly within the initial sliding stage and subsequently remain constant. The average COF within stable ranges decreases significantly with the external load G in the power-function form, G−0.5. Meanwhile, the COF increases slightly with the sliding velocity. Finally, a complete illustration of the dependences of the granular COF on the external load and sliding velocity is provided. Our study contributes to granular friction research by providing an innovative experimental approach for directly measuring the COF and implicitly correlating the evolution of the force chain network.


Sign in / Sign up

Export Citation Format

Share Document