An experimental study on the atomization characteristics of impinging jets of power law fluid

2015 ◽  
Vol 217 ◽  
pp. 49-57 ◽  
Author(s):  
Yong-cui Ma ◽  
Fu-qiang Bai ◽  
Qing Chang ◽  
Ji-ming Yi ◽  
Kui Jiao ◽  
...  
2012 ◽  
Vol 625 ◽  
pp. 57-60
Author(s):  
En Dong Wang ◽  
Yan Yin ◽  
Qing Du

Shear-thinning power-law fluid is a kind of non-Newtonian fluid in which the viscosity is a function of shear rate. Impinging jets system is used to study the breakup characteristics of power-law liquid sheets formed by two symmetrical round jets in this study. High quality images are obtained from the experiment with a high speed camera and breakup length is extracted from the images. Closed-rim sheet, web-like sheet and ligaments sheet are observed with the increase of jet velocity. A series of images show that the wave length on the surface of sheets tends to decline as the jet velocity increases. At a low We number, the breakup length increases with an increasing We number. However, it first increases and then decreases when the liquid sheet breaks up at a high We number. The liquid jets with larger diameter collide to each other and lead to a liquid sheet with a smaller breakup length.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Fei Zhao ◽  
Li-Zi Qin ◽  
Qing-Fei Fu ◽  
Chao-Jie Mo ◽  
Li-Jun Yang

The spray characteristics of a liquid sheet contribute much to the investigation of atomization efficiency. Considering the jet contracting effect of elliptical jets, an improved model of elliptical power-law fluid jets is proposed herein to derive the spray characteristics. Some experiments have been conducted to verify its feasibility, and the results show a good agreement with theoretical predictions. The effect of the aspect ratio on sheet shape and thickness has been studied to interpret the phenomenon that liquid sheets formed by the impinging elliptical jets are more likely to disintegrate. The relationships between rheological parameters (K and n) and the spray features are also discussed.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1295
Author(s):  
Aldo Tamburrino ◽  
Cristóbal Traslaviña

The results of an experimental study on the condition of incipient transport of non-cohesive particles due to the flow of a power-law fluid in a rectangular pipe are presented in this article. The pipe can change its inclination, and experiments were carried out with positive and negative slopes. From a dimensional analysis, the parameters that define the condition of incipient motion were found and validated with experimental data. Thus, the threshold condition is well defined by a particle Reynolds number and a Galileo number, properly modified to take into account the power-law rheology of the fluid. The experimental data are also presented in a standard Shields diagram, including the data obtained in other studies carried out in open-channel laminar flows of Newtonian and power-law fluids.


2018 ◽  
Vol 90 ◽  
pp. 37-47 ◽  
Author(s):  
Xing-Wang Tian ◽  
Shi-Ming Xu ◽  
Zhen-Hua Sun ◽  
Ping Wang ◽  
Lin Xu ◽  
...  

2009 ◽  
Vol 36 (6) ◽  
pp. 524-537 ◽  
Author(s):  
P. A. Lakshmi Narayana ◽  
P. V. S. N. Murthy ◽  
P. V. S. S. S. R. Krishna ◽  
Adrian Postelnicu

Sign in / Sign up

Export Citation Format

Share Document