Viscoplastic fluid displacement flows in horizontal channels: Numerical simulations

2017 ◽  
Vol 249 ◽  
pp. 79-96 ◽  
Author(s):  
A. Eslami ◽  
I.A. Frigaard ◽  
S.M. Taghavi
Author(s):  
Abdallah Ghazal ◽  
Ida Karimfazli

Abstract In Canada, the Alberta Energy Regulator’s (AER) liability report, issued in 2018, predicted that the number of inactive wells in the province will double by 2030. Despite the increase in the number of inactive wells, there is a need to close them properly to avoid hazards escape. Various aspects of well plug technologies in the Canadian abandoning industry are empirical. Many plugs are formed by injecting cement slurry into wells that are otherwise filled with fresh water for the slurry to build up on top of a water layer at a desired location. However, cement is heavier than water. Thus, successful plug placement following this methodology is questionable from the hydrodynamics perspective. The present study aims to identify features of successful processes for placement of off-bottom plugs. To that end, we investigate mixing of fluids of different densities as the denser fluid is injected into the lighter fluid. Cement slurry is modeled as a viscoplastic fluid. The fluid motion is governed by hydrodynamic models, and the two fluids (i.e. cement and water) are considered to be miscible and are allowed to mix. Systematic numerical simulations aim to reveal how the characteristics of cement and the well configuration affect the placement process. We show that successful plug placement depends on the formation of a mixed layer, of the wellbore fluid and cement slurry, below the injection site. We identify and provide representative cases of the processes promoting the formation of the mixed layer: high diffusion and growing instabilities.


Author(s):  
Shan Lyu ◽  
Seyed Mohammad Taghavi

Abstract Oil and gas well primary cementing operations involve pumping a sequence of fluids into the well, for example, cement along a circular pipe (casing) to remove (displace) in situ drilling mud. Cementing is vital to the implementation of zonal isolation and well integrity in the completion of oil and gas wells. The success of a cementing operation is largely determined by the displacement efficiency. There are several factors, such as rheological properties of fluids, geometrical specifications of the annulus, flow rate, and pipe movement, which can considerably affect the displacement efficiency. A casing rotation is generally believed to improve the displacement process, but without solid laboratory experiments to prove that such rotation is indeed effective. In this work, the influence of a pipe rotation on a displacement flow which consists of a yield stress displaced fluid is analyzed via experimental methods. A heavy Newtonian fluid (salt water) displaces a light viscoplastic fluid (Carbopol gel) in a long, inclined pipe. Our results show that the pipe rotation helps break up the Carbopol gel remained on the surface of the flow geometry, and eventually leads to an efficient removal of the displaced fluid above a critical rotation speed. The analysis includes measuring the propagation velocity of the leading front (V̂f) for different parameters, such as the pipe inclination angle, the imposed flow velocity (V̂0) and the rotation speed. The leading front velocity decreases as the rotation speed increases and it is found V̂f ≈ 1.6V̂0. Three flow regimes are observed: slumping type, ripped type and effective-removal type.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
R. Mahmood ◽  
N. Kousar ◽  
M. Yaqub ◽  
K. Jabeen

In this paper, numerical simulations are performed in a single and double lid driven square cavity to study the flow of a Bingham viscoplastic fluid. The governing equations are discretized with the help of finite element method in space and the nonconforming Stokes elementQ~1/Q0is utilized which gives 2nd-order accuracy for velocity and 1st-order accuracy for pressure. The discretized systems of nonlinear equations are treated by using the Newton method and the inner linear subproablems are solved by the direct solver UMFPACK. A qualitative comparison is done with the results reported in the literature. In addition to these comparisons, some new reference data for the kinetic energy is generated. All these implementations are done in the open source software package FEATFLOW which is a general purpose finite element based solver package for solving partial differential equations.


2020 ◽  
Vol 640 ◽  
pp. A53
Author(s):  
L. Löhnert ◽  
S. Krätschmer ◽  
A. G. Peeters

Here, we address the turbulent dynamics of the gravitational instability in accretion disks, retaining both radiative cooling and irradiation. Due to radiative cooling, the disk is unstable for all values of the Toomre parameter, and an accurate estimate of the maximum growth rate is derived analytically. A detailed study of the turbulent spectra shows a rapid decay with an azimuthal wave number stronger than ky−3, whereas the spectrum is more broad in the radial direction and shows a scaling in the range kx−3 to kx−2. The radial component of the radial velocity profile consists of a superposition of shocks of different heights, and is similar to that found in Burgers’ turbulence. Assuming saturation occurs through nonlinear wave steepening leading to shock formation, we developed a mixing-length model in which the typical length scale is related to the average radial distance between shocks. Furthermore, since the numerical simulations show that linear drive is necessary in order to sustain turbulence, we used the growth rate of the most unstable mode to estimate the typical timescale. The mixing-length model that was obtained agrees well with numerical simulations. The model gives an analytic expression for the turbulent viscosity as a function of the Toomre parameter and cooling time. It predicts that relevant values of α = 10−3 can be obtained in disks that have a Toomre parameter as high as Q ≈ 10.


2007 ◽  
Vol 17 (4) ◽  
pp. 347-380 ◽  
Author(s):  
Mohammad P. Fard ◽  
Denise Levesque ◽  
Stuart Morrison ◽  
Nasser Ashgriz ◽  
J. Mostaghimi

Sign in / Sign up

Export Citation Format

Share Document