Environment dependence of KIc of glass

2021 ◽  
Vol 566 ◽  
pp. 120873
Author(s):  
Theany To ◽  
Fabrice Célarié ◽  
Yann Gueguen ◽  
N'Goan Brou ◽  
Chhoung Lim ◽  
...  
Author(s):  
Greg Ver Steeg

Learning by children and animals occurs effortlessly and largely without obvious supervision. Successes in automating supervised learning have not translated to the more ambiguous realm of unsupervised learning where goals and labels are not provided. Barlow (1961) suggested that the signal that brains leverage for unsupervised learning is dependence, or redundancy, in the sensory environment. Dependence can be characterized using the information-theoretic multivariate mutual information measure called total correlation. The principle of Total Cor-relation Ex-planation (CorEx) is to learn representations of data that "explain" as much dependence in the data as possible. We review some manifestations of this principle along with successes in unsupervised learning problems across diverse domains including human behavior, biology, and language.


2020 ◽  
Vol 10 (6) ◽  
pp. 2111
Author(s):  
Yoshihiro Momose ◽  
Takao Sakurai ◽  
Keiji Nakayama

Little is known about the temperature dependence of electron transfer occurring at real metal surfaces. For iron surfaces scratched in seven environments, we report Arrhenius activation energies obtained from the data of photoelectron emission (PE) and X-ray photoelectron spectroscopy (XPS). The environments were air, benzene, cyclohexane, water, methanol, ethanol, and acetone. PE was measured using a modified Geiger counter during repeated temperature scans in the 25–339 °C range under 210-nm-wavelength light irradiation and during light wavelength scans in the range 300 to 200 nm at 25, 200, and 339 °C. The standard XPS measurement of Fe 2p, Fe 3p, O 1s, and C 1s spectra was conducted after wavelength scan. The total number of electrons counted in the XPS measurement of the core spectra, which was called XPS intensity, strongly depended on the environments. The PE quantum yields during the temperature scan increased with temperature, and its activation energies (ΔEaUp1) strongly depended on the environment, being in the range of 0.212 to 0.035 eV. The electron photoemission probability (αA) obtained from the PE during the wavelength scan increased with temperature, and its activation energies (ΔEαA) were almost independent of the environments, being in the range of 0.113–0.074 eV. The environment dependence of the PE behavior obtained from temperature and wavelength scans was closely related to that of the XPS characteristics, in particular, the XPS intensities of O 1s and the O2− component of the O 1s spectrum, the acid–base interaction between the environment molecule and Fe–OH, and the growth of non-stoichiometric FexO. Furthermore, the origin of the αA was attributed to the escape depth of hot electrons across the overlayer.


2019 ◽  
Vol 488 (1) ◽  
pp. 782-802 ◽  
Author(s):  
N Chandrachani Devi ◽  
Aldo Rodríguez-Puebla ◽  
O Valenzuela ◽  
Vladimir Avila-Reese ◽  
César Hernández-Aguayo ◽  
...  

Abstract We investigate the dependence of the galaxy–halo connection and galaxy density field in modified gravity models using the N-body simulations for f(R) and nDGP models at z = 0. Because of the screening mechanisms employed by these models, chameleon and Vainshtein, haloes are clustered differently in the non-linear regime of structure formation. We quantify their deviations in the galaxy density field from the standard Λ cold dark matter (ΛCDM) model under different environments. We populate galaxies in haloes via the (sub)halo abundance matching. Our main results are as follows: (1) The galaxy–halo connection strongly depends on the gravity model; a maximum variation of ${\sim }40{{\ \rm per\ cent}}$ is observed between halo occupational distribution (HOD) parameters; (2) f(R) gravity models predict an excess of galaxies in low-density environments of ${\sim }10{{\ \rm per\ cent}}$ but predict a deficit of ${\sim }10{{\ \rm per\ cent}}$ at high-density environments for |fR0| = 10−4 and 10−6 while |fR0| = 10−5 predicts more high-density structures; nDGP models are consistent with ΛCDM; (3) different gravity models predict different dependences of the galaxy luminosity function (GLF) with the environment, especially in void-like regions we find differences around ${\sim }10{{\ \rm per\ cent}}$ for the f(R) models while nDPG models remain closer to ΛCDM for low-luminosity galaxies but there is a deficit of ${\sim }11{{\ \rm per\ cent}}$ for high-luminosity galaxies in all environments. We conclude that the dependence of the GLF with environment might provide a test to distinguish between gravity models and their screening mechanisms from the ΛCDM. We provide HOD parameters for the gravity models analysed in this paper.


2014 ◽  
Vol 587-589 ◽  
pp. 409-412
Author(s):  
Li Xin Sun ◽  
Hong Dong ◽  
Jing Fen Yang

Thermal conductivity of expanded polystyrene foam board (EPS) is affected by the environment when used as insulation material in the building. In order to simulate the impact on EPS in the building and test the thermal conductivity of EPS in different conditions, we conducted a simulation study, including temperature and humidity simulation tests, freeze-thaw tests and mechanical tests. This study of EPS in different environmental conditions established a good foundation for further research on environment dependence of thermal conductivity in national codes.


Sign in / Sign up

Export Citation Format

Share Document