A novel mice model for Parkinson’s disease: Fibril-inoculated mutant α-Synuclein BAC Transgenic Mice

2017 ◽  
Vol 381 ◽  
pp. 721
Author(s):  
S. Okuda ◽  
N. Uemura ◽  
M. Uemura ◽  
H. Yamakado ◽  
R. Takahashi
2009 ◽  
Vol 12 (7) ◽  
pp. 826-828 ◽  
Author(s):  
Yanping Li ◽  
Wencheng Liu ◽  
Tinmarla F Oo ◽  
Lei Wang ◽  
Yi Tang ◽  
...  

2022 ◽  
Vol 13 ◽  
Author(s):  
Meige Zheng ◽  
Yanchang Liu ◽  
Zhaoming Xiao ◽  
Luyan Jiao ◽  
Xian Lin

The loss of parvalbumin-positive (PV+) neurons in the substantia nigra pars reticulata (SNR) was observed in patients with end-stage Parkinson’s disease (PD) and our previously constructed old-aged Pitx3-A53Tα-Syn × Tau–/– triple transgenic mice model of PD. The aim of this study was to examine the progress of PV+ neurons loss. We demonstrated that, as compared with non-transgenic (nTg) mice, the accumulation of α-synuclein in the SNR of aged Pitx3-A53Tα-Syn × Tau–/– mice was increased obviously, which was accompanied by the considerable degeneration of PV+ neurons and the massive generation of apoptotic NeuN+TUNEL+ co-staining neurons. Interestingly, PV was not costained with TUNEL, a marker of apoptosis. PV+ neurons in the SNR may undergo a transitional stage from decreased expression of PV to increased expression of NeuN and then to TUNEL expression. In addition, the degeneration of PV+ neurons and the expression of NeuN were rarely observed in the SNR of nTg and the other triple transgenic mice. Hence, we propose that Tau knockout and α-syn A53T synergy modulate PV+ neurons degeneration staging in the SNR of aged PD-liked mice model, and NeuN may be suited for an indicator that suggests degeneration of SNR PV+ neurons. However, the molecular mechanism needs to be further investigated.


2012 ◽  
Vol 73 (2) ◽  
pp. 173-177 ◽  
Author(s):  
Hodaka Yamakado ◽  
Yasuhiro Moriwaki ◽  
Nobuyuki Yamasaki ◽  
Tsuyoshi Miyakawa ◽  
Junko Kurisu ◽  
...  

2020 ◽  
Author(s):  
Baojian Guo ◽  
Chengyou Zheng ◽  
Jie Cao ◽  
Shangming Li ◽  
Fangcheng Luo ◽  
...  

Abstract Background: The peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and Nuclear factor erythroid 2-related factor 2 (Nrf2) are key regulators controlling antioxidant defense, mitochondrial biogenesis and cellular proteostasis. Dysfunction of these processes has been implicated in the pathogenesis of Parkinson’s disease (PD). Activation of PGC-1α/Nrf2 might improve mitochondrial dysfunction, promote α-synuclein (α-syn) clearance and attenuate degeneration of nigral dopaminergic neurons in PD. Methods: Neurotoxin-induced in vitro PD model, 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated mice model, unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA)-lesioned rat model, and transgenic mice overexpression of human A53T mutant α-synuclein were used to evaluate the neuroprotective and neurorescue effect of tetramethylpyrazine nitrone (TBN), a free radical scavenger, and its regulation on PGC-1α/Nrf2 pathway. Results: TBN protected against 1-methyl-4-phenylpyridinium (MPP + ) and 6-OHDA insult in cultured primary midbrain neurons. TBN promoted α-syn clearance by autophagy and proteasomal pathways in cell models overexpressing the human A53T mutant α-syn. In MPTP-treated mice, unilateral 6-OHDA-lesioned rats, and the α-syn transgenic mice model, TBN improved motor impairment, increased survival of nigral dopaminergic neurons, and elevated striatal dopamine levels while decreasing the products of oxidative damage. Importantly, TBN down-regulated the α-syn level in the brain and serum of α-syn-transgenic mice. These in vitro and in vivo improvements were associated with activation of the PGC-1α/Nrf2 signaling pathway, resulting in reduced oxidative stress, and enhanced mitochondrial functions. Conclusions: Our work demonstrates that TBN activates PGC-1α/Nrf2 and increases the survival of nigral dopaminergic neurons. These results suggest that TBN warrants further development as a potential new PD treatment.


Brain ◽  
2019 ◽  
Vol 143 (1) ◽  
pp. 249-265 ◽  
Author(s):  
Tomoyuki Taguchi ◽  
Masashi Ikuno ◽  
Mari Hondo ◽  
Laxmi Kumar Parajuli ◽  
Katsutoshi Taguchi ◽  
...  

Abstract Parkinson’s disease is one of the most common movement disorders and is characterized by dopaminergic cell loss and the accumulation of pathological α-synuclein, but its precise pathogenetic mechanisms remain elusive. To develop disease-modifying therapies for Parkinson’s disease, an animal model that recapitulates the pathology and symptoms of the disease, especially in the prodromal stage, is indispensable. As subjects with α-synuclein gene (SNCA) multiplication as well as point mutations develop familial Parkinson’s disease and a genome-wide association study in Parkinson’s disease has identified SNCA as a risk gene for Parkinson’s disease, the increased expression of α-synuclein is closely associated with the aetiology of Parkinson’s disease. In this study we generated bacterial artificial chromosome transgenic mice harbouring SNCA and its gene expression regulatory regions in order to maintain the native expression pattern of α-synuclein. Furthermore, to enhance the pathological properties of α-synuclein, we inserted into SNCA an A53T mutation, two single-nucleotide polymorphisms identified in a genome-wide association study in Parkinson’s disease and a Rep1 polymorphism, all of which are causal of familial Parkinson’s disease or increase the risk of sporadic Parkinson’s disease. These A53T SNCA bacterial artificial chromosome transgenic mice showed an expression pattern of human α-synuclein very similar to that of endogenous mouse α-synuclein. They expressed truncated, oligomeric and proteinase K-resistant phosphorylated forms of α-synuclein in the regions that are specifically affected in Parkinson’s disease and/or dementia with Lewy bodies, including the olfactory bulb, cerebral cortex, striatum and substantia nigra. Surprisingly, these mice exhibited rapid eye movement (REM) sleep without atonia, which is a key feature of REM sleep behaviour disorder, at as early as 5 months of age. Consistent with this observation, the REM sleep-regulating neuronal populations in the lower brainstem, including the sublaterodorsal tegmental nucleus, nuclei in the ventromedial medullary reticular formation and the pedunculopontine nuclei, expressed phosphorylated α-synuclein. In addition, they also showed hyposmia at 9 months of age, which is consistent with the significant accumulation of phosphorylated α-synuclein in the olfactory bulb. The dopaminergic neurons in the substantia nigra pars compacta degenerated, and their number was decreased in an age-dependent manner by up to 17.1% at 18 months of age compared to wild-type, although the mice did not show any related locomotor dysfunction. In conclusion, we created a novel mouse model of prodromal Parkinson’s disease that showed RBD-like behaviour and hyposmia without motor symptoms.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jialong Chen ◽  
Kanmin Mao ◽  
Honglin Yu ◽  
Yue Wen ◽  
Hua She ◽  
...  

Abstract Background Parkinson’s disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), accompanied by accumulation of α-synuclein, chronic neuroinflammation and autophagy dysfunction. Previous studies suggested that misfolded α-synuclein induces the inflammatory response and autophagy dysfunction in microglial cells. The NLRP3 inflammasome signaling pathway plays a crucial role in the neuroinflammatory process in the central nervous system. However, the relationship between autophagy deficiency and NLRP3 activation induced by α-synuclein accumulation is not well understood. Methods Through immunoblotting, immunocytochemistry, immunofluorescence, flow cytometry, ELISA and behavioral tests, we investigated the role of p38-TFEB-NLRP3 signaling pathways on neuroinflammation in the α-synuclein A53T PD models. Results Our results showed that increased protein levels of NLRP3, ASC, and caspase-1 in the α-synuclein A53T PD models. P38 is activated by overexpression of α-synuclein A53T mutant, which inhibited the master transcriptional activator of autophagy TFEB. And we found that NLRP3 was degraded by chaperone-mediated autophagy (CMA) in microglial cells. Furthermore, p38-TFEB pathways inhibited CMA-mediated NLRP3 degradation in Parkinson's disease. Inhibition of p38 had a protective effect on Parkinson's disease model via suppressing the activation of NLRP3 inflammasome pathway. Moreover, both p38 inhibitor SB203580 and NLRP3 inhibitor MCC950 not only prevented neurodegeneration in vivo, but also alleviated movement impairment in α-synuclein A53T-tg mice model of Parkinson’s disease. Conclusion Our research reveals p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease, which could be a potential therapeutic strategy for PD. Graphical abstract p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease. In this model, p38 activates NLRP3 inflammasome via inhibiting TFEB in microglia. TFEB signaling negatively regulates NLRP3 inflammasome through increasing LAMP2A expression, which binds to NLRP3 and promotes its degradation via chaperone-mediated autophagy (CMA). NLRP3-mediated microglial activation promotes the death of dopaminergic neurons.


2021 ◽  
Vol 12 ◽  
Author(s):  
Babita Singh ◽  
Shivani Pandey ◽  
Mohammad Rumman ◽  
Shashank Kumar ◽  
Prem Prakash Kushwaha ◽  
...  

Ethnopharmacological Relevance: Parkinson’s disease (PD) is characterized by progressive death of dopaminergic neurons. The presently used medicines only tackle the symptoms of PD, but none makes a dent on the processes that underpin the disease’s development. Herbal medicines have attracted considerable attention in recent years. Bacopa monnieri (L.) Wettst (Brahmi) has been used in Indian Ayurvedic medicine to enhance memory and intelligence. Herein, we assessed the neuroprotective role of Bacopa monnieri (L.) Wettst on Parkinson’s disease.Aim of the Study:Bacopa monnieri (L.) Wettst, a medicinal herb, is widely used as a brain tonic. We investigated the neuroprotective and neurorescue properties of Bacopa monnieri (L.) Wettst extract (BME) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model of PD.Materials and Methods: The mice model of MPTP-induced PD is used in the study. In the neuroprotective (BME + MPTP) and neurorescue (MPTP + BME) experiments, the animals were administered 40 mg/kg body weight BME orally before and after MPTP administration, respectively. Effect of BME treatment was evaluated by accessing neurobehavioral parameters and levels of dopamine, glutathione, lipid peroxide, and nitrites. An in silico study was performed using AutoDock Tools 1.5.6 (ADT).Results: A significant recovery in behavioral parameters, dopamine level, glutathione level, lipid peroxides, and nitrite level was observed in BME-treated mice. Treatment with BME before or after MPTP administration has a protective effect on dopaminergic neurons, as evidenced by a significant decrease in GFAP immunostaining and expression of inducible nitric oxide synthase (iNOS) in the substantia nigra region; however, the degree of improvement was more prominent in mice receiving BME treatment before MPTP administration. Moreover, the in silico study revealed that the constituents of BM, including bacosides, bacopasides, and bacosaponins, can inactivate the enzyme monoamine oxidase B, thus preventing the breakdown of MPTP to MPP+.Conclusion: Our results showed that BME exerts both neuroprotective and neurorescue effects against MPTP-induced degeneration of the nigrostriatal dopaminergic neurons. Moreover, BME may slow down the disease progression and delay the onset of neurodegeneration in PD.


Sign in / Sign up

Export Citation Format

Share Document