Factors affecting the hydrothermal corrosion behavior of chemically vapor deposited silicon carbides

2019 ◽  
Vol 518 ◽  
pp. 350-356 ◽  
Author(s):  
Jung Ho Shin ◽  
Daejong Kim ◽  
Hyeon-Geun Lee ◽  
Ji Yeon Park ◽  
Weon-Ju Kim
Author(s):  
Jianxin Liu ◽  
Jun Chen ◽  
Quanan Li ◽  
Xiaoya Chen ◽  
Ziyan Zhang

Abstract The effects of aging time on corrosion behavior of Mg-4Nd-2Gd-0.5Zr alloy in 3.5% NaCl solution were investigated by microanalysis, weight loss test and electrochemical test. The results show that the corrosion rate of Mg-4Nd-2Gd-0.5Zr alloy decreases first and then increases with the extension of aging time. Aging treatment alters the grain size and the distribution of the second phases. The second phases and grain size are the key factors affecting the corrosion rate of magnesium alloy. Among the tested alloys, the T6-8 h alloy shows the lowest corrosion rate, which is mainly attributed to the continuous distribution of second phases restricting the expansion of corrosion, hence the T6-8 h alloy showed the highest corrosion resistance. The corrosion rate of T6-16 h alloy increases obviously because of the growth of the grain size and the segregation of second phases, which accelerates the corrosion progress.


Author(s):  
B. Cunningham ◽  
D.G. Ast

There have Been a number of studies of low-angle, θ < 4°, [10] tilt boundaries in the diamond lattice. Dislocations with Burgers vectors a/2<110>, a/2<112>, a<111> and a<001> have been reported in melt-grown bicrystals of germanium, and dislocations with Burgers vectors a<001> and a/2<112> have been reported in hot-pressed bicrystals of silicon. Most of the dislocations were found to be dissociated, the dissociation widths being dependent on the tilt angle. Possible dissociation schemes and formation mechanisms for the a<001> and a<111> dislocations from the interaction of lattice dislocations have recently been given.The present study reports on the dislocation structure of a 10° [10] tilt boundary in chemically vapor deposited silicon. The dislocations in the boundary were spaced about 1-3nm apart, making them difficult to resolve by conventional diffraction contrast techniques. The dislocation structure was therefore studied by the lattice-fringe imaging technique.


Sign in / Sign up

Export Citation Format

Share Document