Effect of radial hydride on room temperature fracture toughness of Zr-2.5Nb pressure tube material

2021 ◽  
Vol 544 ◽  
pp. 152681
Author(s):  
Avinash Gopalan ◽  
A.K. Bind ◽  
Saurav Sunil ◽  
T.N. Murty ◽  
R.K. Sharma ◽  
...  
2018 ◽  
Vol 59 (4) ◽  
pp. 518-527 ◽  
Author(s):  
Shunichi Nakayama ◽  
Nobuaki Sekido ◽  
Sojiro Uemura ◽  
Sadahiro Tsurekawa ◽  
Kyosuke Yoshimi

2018 ◽  
Vol 508 ◽  
pp. 546-555 ◽  
Author(s):  
Rishi K. Sharma ◽  
A.K. Bind ◽  
G. Avinash ◽  
R.N. Singh ◽  
Asim Tewari ◽  
...  

1978 ◽  
Vol 100 (2) ◽  
pp. 195-199 ◽  
Author(s):  
W. J. Mills

The elastic-plastic fracture toughness (JIc) response of precipitation strengthened Alloy A-286 has been evaluated by the multi-specimen R-curve technique at room temperature, 700 K (800°F) and 811 K (1000°F). The fracture toughness of this iron-base superalloy was found to decrease with increasing temperature. This phenomenon was attributed to a reduction in the materials’s strength and ductility at elevated temperatures. Electron fractographic examination revealed that the overall fracture surface micromorphology, a duplex dimple structure coupled with stringer troughs, was independent of test temperature. In addition, the fracture resistance of Alloy A-286 was found to be weakened by the presence of a nonuniform distribution of second phase particles throughout the matrix.


1996 ◽  
Vol 460 ◽  
Author(s):  
R. A. Varin ◽  
L. Zbroniec

ABSTRACTFracture toughness vs. temperature of the cubic (L12), Mn- modified titanium trialuminide (based on Al3Ti) was investigated in air at the temperature range up to 1000°C. Toughness calculated from the maximum load exhibits a broad peak (KQ≈7–10 MPara0,5) at the 200- 500°C temperature range and then decreases with increasing temperature, reaching a room temperature value of ∼4.5 MPam0.5 at 1000°C. However, the work of fracture (γWOF, J/m2) and the stress intensity factor calculated from it (KIWOF) increases continuously with increasing temperature. Fracture modes exhibit a gradual transition from transgranular cleavage at room temperature to predominantly intergranular failure at the 800- 1000°C range.


Sign in / Sign up

Export Citation Format

Share Document