Mechanical properties of polyvinyl alcohol fiber-reinforced sulfoaluminate cement mortar containing high-volume of fly ash

2020 ◽  
pp. 101988
Author(s):  
Mengdie Niu ◽  
Junjie Zhang ◽  
Guoxin Li ◽  
Zhanping Song ◽  
Xudong Wang
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yi Zhao ◽  
Xuan Yang ◽  
Qingyu Zhang ◽  
Naixing Liang ◽  
Yangkai Xiang ◽  
...  

A series of tests were carried out to evaluate crack resistance and mechanical properties of polyvinyl alcohol fiber-reinforced cement-stabilized macadam, which is widely used as pavement base or subbase composite material. Three series of cement-stabilized macadam mixtures with cement content of 3.2%, 3.6%, and 4.0% were prepared by incorporating four various contents (0, 0.6, 0.9, and 1.2 kg/m3) and lengths (12, 18, 24, and 30 mm) of polyvinyl alcohol fiber. The optimum polyvinyl alcohol fiber content, fiber length, and cement content were determined based on the mechanical properties of cement-stabilized macadam mixtures. Then, unconfined compressive strength test, compressive resilience modulus test, splitting strength test, flexural tensile strength test, drying shrinkage test, and temperature shrinkage test were carried out in this study. The results show that polyvinyl alcohol fiber-reinforced cement-stabilized prepared by optimum proportions (cement 3.6%, fiber content 0.9 kg/m3, and fiber length 24 mm) has good crack resistance. The incorporation of polyvinyl alcohol fiber can effectively improve compressive strength and splitting strength, while its effect on CRM of cement-stabilized macadam is not remarkable. The anti-dry-shrinkage property and anti-temperature-shrinkage property of the specimens are also drastically improved due to the reinforcement effect of polyvinyl alcohol fiber. Moreover, the crack resistance index is proposed to evaluate the crack resistance of materials. The crack resistance of PVA fiber-reinforced cement-stabilized macadam prepared by optimum proportions is improved by 44.4%. Consequently, the mechanical properties and crack resistance of cement-stabilized macadam are obviously improved by adding polyvinyl alcohol fiber.


Author(s):  
He Tian ◽  
Y. X. Zhang

In this paper, a new green fiber-reinforced cementitious composite containing high volume fly ash and hybrid steel and bagasse fibers is developed. Eco-friendly bagasse fibers from industrial waste and steel fibers are used to improve the mechanical behavior of the new composite, and high-volume fly ash is used to decrease the usage of cement in order to be more environmentally friendly. The influence of the fiber content and fly ash/cement ratio on the mechanical properties of the composite is investigated through the study of the mechanical properties of the new composite, such as compressive strength, modulus of elasticity, and modulus of rupture. It is found that compressive strength, Young's modulus of the composite, decreases with the increase of the fly ash/cement ratio and bagasse fiber content. However, the modulus of rupture of the composite increases firstly with bagasse fiber content, and decreases when bagasse fiber content reaches 3% by volume.


Sign in / Sign up

Export Citation Format

Share Document