scholarly journals Crack Resistance and Mechanical Properties of Polyvinyl Alcohol Fiber-Reinforced Cement-Stabilized Macadam Base

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yi Zhao ◽  
Xuan Yang ◽  
Qingyu Zhang ◽  
Naixing Liang ◽  
Yangkai Xiang ◽  
...  

A series of tests were carried out to evaluate crack resistance and mechanical properties of polyvinyl alcohol fiber-reinforced cement-stabilized macadam, which is widely used as pavement base or subbase composite material. Three series of cement-stabilized macadam mixtures with cement content of 3.2%, 3.6%, and 4.0% were prepared by incorporating four various contents (0, 0.6, 0.9, and 1.2 kg/m3) and lengths (12, 18, 24, and 30 mm) of polyvinyl alcohol fiber. The optimum polyvinyl alcohol fiber content, fiber length, and cement content were determined based on the mechanical properties of cement-stabilized macadam mixtures. Then, unconfined compressive strength test, compressive resilience modulus test, splitting strength test, flexural tensile strength test, drying shrinkage test, and temperature shrinkage test were carried out in this study. The results show that polyvinyl alcohol fiber-reinforced cement-stabilized prepared by optimum proportions (cement 3.6%, fiber content 0.9 kg/m3, and fiber length 24 mm) has good crack resistance. The incorporation of polyvinyl alcohol fiber can effectively improve compressive strength and splitting strength, while its effect on CRM of cement-stabilized macadam is not remarkable. The anti-dry-shrinkage property and anti-temperature-shrinkage property of the specimens are also drastically improved due to the reinforcement effect of polyvinyl alcohol fiber. Moreover, the crack resistance index is proposed to evaluate the crack resistance of materials. The crack resistance of PVA fiber-reinforced cement-stabilized macadam prepared by optimum proportions is improved by 44.4%. Consequently, the mechanical properties and crack resistance of cement-stabilized macadam are obviously improved by adding polyvinyl alcohol fiber.

2014 ◽  
Vol 584-586 ◽  
pp. 1477-1481 ◽  
Author(s):  
Zhong Yang ◽  
De Bao Jiang ◽  
Xiao Jing Gu

Polyvinyl alcohol fiber reinforced cement-based composites are a new kind of material based on micro mechanics design. It is produced by adding polyvinyl alcohol fiber in the cement-based composites. In efforts to study the mechanical properties of polyvinyl alcohol fiber reinforced cement-based composites, some specimens were tested to examine performances. According to experimental investigation on mechanical properties, the stress-strain relationship curves and failure patterns are obtained. The test indicates that polyvinyl alcohol fiber reinforced cement-based composites have better toughness and fracture energy, and it has superior physical mechanical performance.


2011 ◽  
Vol 287-290 ◽  
pp. 178-182 ◽  
Author(s):  
Kai Tao Xiao ◽  
Jia Zheng Li ◽  
Hua Quan Yang

The strength, ultimate tensile value, compressive elastic modulus and drying shrinkage of polyvinyl alcohol fiber reinforced concrete were studied by tests, and its crack resistance property was also studied by plate method and temperature stress testing machine. The test results showed that PVA fiber could improve the tensile strength and ultimate tensile value of concrete, lower its compressive elastic modulus and drying shrinkage, restrain its early plastic shrinkage and drying shrinkage cracks, reduce its cracking temperature and improve the crack resistance property of concrete, moreover, the effect of long PVA fiber was better.


2020 ◽  
Vol 32 (11) ◽  
pp. 04020312
Author(s):  
Chunhua Zhao ◽  
Naixing Liang ◽  
Xiaolong Zhu ◽  
Lingqing Yuan ◽  
Bo Zhou

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Yan Tan ◽  
Ziling Xu ◽  
Zeli Liu ◽  
Jiuhong Jiang

To improve the mechanical properties and frost resistance of concrete, silica fume, and polyvinyl alcohol fiber compounded in concrete. The mechanical and frost resistance of concrete were comprehensively analyzed and evaluated for strength change, mass loss, and relative dynamic elastic modulus change by compressive strength test, flexural strength test, and rapid freeze-thaw test. The results showed that with the incorporation of silica fume and polyvinyl alcohol fiber, the compressive and flexural strengths of concrete were improved, and the decrease in mass loss rate and relative dynamic elastic modulus of concrete after freeze-thaw cycles were significantly reduced, which indicated that the compounding of silica fume and polyvinyl alcohol fiber improved the frost resistance of concrete. When the content of silica fume was 10% and the volume content of polyvinyl alcohol fiber was 1%, the comprehensive mechanical performance and frost resistance of concrete is the best. The compressive strength increased by 26.6% and flexural strength increased by 29.17% compared to ordinary concrete. Based on the test data, to study the macroscopic damage evolution of concrete compound silica fume and polyvinyl alcohol fiber under repeated freeze-thaw conditions. The Weibull distribution probability model and GM (1, 1) model were established. The average relative errors between the predicted and actual data of the two models are small and very close. It is shown that both models can reflect well the development of concrete damage under a freeze-thaw environment. This provides an important reference value and theoretical basis for the durability evaluation and life prediction of compound silica fume and polyvinyl alcohol fiber concrete in cold regions.


Sign in / Sign up

Export Citation Format

Share Document