The compressive behaviour of natural and recycled aggregate concrete during and after exposure to elevated temperatures

2021 ◽  
Vol 38 ◽  
pp. 102214
Author(s):  
P. Pliya ◽  
H. Hajiloo ◽  
S. Romagnosi ◽  
D. Cree ◽  
S. Sarhat ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Yunchao Tang ◽  
Wanhui Feng ◽  
Zheng Chen ◽  
Yumei Nong ◽  
Minhui Yao ◽  
...  

The utilization of recycled aggregates made from construction wastes and recycled rubber made from waste tires is an effective method to realize the sustainable development. Thus, this study aims to determine the feasibility of using recycled aggregate concrete containing rubber, named rubberized recycled aggregate concrete (RRAC) as a new type of green-building material. The experimental carbon emissions test verified RRAC as a low-carbon material. In addition, the residual mechanical properties of RRAC were investigated under elevated temperatures. After exposure at 200, 400, and 600 C for 60 min, the stress−strain curve, compressive strength, energy absorption capacity, and spalling resistance of RRAC with recycled aggregate replacement ratios of 50 and 100%, rubber contents of 0, 5, 10, and 15% were explored with microstructural analysis. Moreover, empirical models were proposed to describe the effects of heated temperatures and rubber contents on the stress–strain relationship of RRAC. The results indicated that the rubber particles could reduce the spalling of specimens based on the vapor pressure theory. Therefore, this study provided scientific guidance for the design of structures made with RRAC for resisting high temperatures.


2019 ◽  
Vol 9 (10) ◽  
pp. 2057 ◽  
Author(s):  
Zongping Chen ◽  
Ji Zhou ◽  
Peihuan Ye ◽  
Ying Liang

In order to study the mechanical properties of recycled aggregate concrete (RAC) specimens after exposure to high temperatures, 120 RAC prism specimens, 57 reinforced recycled aggregate concrete (RRAC) specimens, and 56 steel reinforced recycled aggregate concrete (SRRAC) specimens were designed, involving two varying parameters such as recycled coarse aggregate (RCA) replacement percentage and temperature. The performance degradation of RCA materials, RRAC members, and SRRAC members after exposure to high temperatures was analyzed in depth. The research results show that after exposure to high temperatures the surface color of members may change from cinereous to gray-white. Some cracks may appear on surface of members and the mass of members may be lighter. With the increase of the experiencing temperatures, the bearing capacity (compressive, bending, and shearing) of RAC and its members are reduced, but their ductility and energy dissipation capacity have little effect on the change of high temperature. With the increase of the RCA replacement percentage, the mass loss ratio, ultimate bearing capacity, and peak deformation of each RAC and its members increase slightly, and the displacement ductility and energy dissipation capacity of the RRAC members decrease slightly. With the increase in replacement percentage of RCA, mechanical properties of RAC and their members have little effect after exposure to elevated temperatures, and the fluctuation range is within 20%.


Sign in / Sign up

Export Citation Format

Share Document