The effect of longitudinal reinforcement ratio on the lateral buckling behavior of R/C walls modelled using prism elements

2021 ◽  
Vol 42 ◽  
pp. 102456
Author(s):  
Theodoros Chrysanidis
2015 ◽  
Vol 108 ◽  
pp. 11-22 ◽  
Author(s):  
Sherif A. Ibrahim ◽  
Abdelrahim K. Dessouki ◽  
Seham A. El -Sa'eed

Author(s):  
Aaron Kadima Lukanu Lwa Nzambi ◽  
Dênio Ramam Carvalho de Oliveira ◽  
Marcus Vinicius dos Santos Monteiro ◽  
Luiz Felipe Albuquerque da Silva

Abstract Some normative recommendations are conservative in relation to the shear strength of reinforced concrete beams, not directly considering the longitudinal reinforcement rate. An experimental program containing 8 beams of (100 x 250) mm2 and a length of 1,200 mm was carried out. The concrete compression strength was 20 MPa with and without 1.00% of steel fiber addition, without stirrups and varying the longitudinal reinforcement ratio. Comparisons between experimental failure loads and main design codes estimates were assessed. The results showed that the increase of the longitudinal reinforcement ratio from 0.87% to 2.14% in beams without steel fiber led to an improvement of 59% in shear strength caused by the dowel effect, while the corresponding improvement was of only 22% in fibered concrete beams. A maximum gain of 109% in shear strength was observed with the addition of 1% of steel fibers comparing beams with the same longitudinal reinforcement ratio (1.2%). A significant amount of shear strength was provided by the inclusion of the steel fibers and allowed controlling the propagation of cracks by the effect of stress transfer bridges, transforming the brittle shear mechanism into a ductile flexural one. From this, it is clear the shear benefit of the steel fiber addition when associated to the longitudinal reinforcement and optimal values for this relationship would improve results.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yamin Song ◽  
Chuanguo Fu ◽  
Shuting Liang ◽  
Ankang Yin ◽  
Longji Dang

To investigate fire-resistance behaviors of simple supported reinforced concrete (RC) beams with three faces exposed to fire, six full-scale specimens were designed in accordance with the principle of “strong bending and weak shearing.” One beam was treated as the control case of room temperature while the other five beams were exposed to high temperature. Parameters related to shear capacity were discussed, such as longitudinal reinforcement ratio and stirrup ratio. The experimental results show that brittle shear failure under room temperature may transfer to shear-bend failure at high temperature due to thermal expansion and strength degradation of concrete and steel. The greater the longitudinal reinforcement ratio, the longer the failure time of specimens. It indicates that the pinning action of longitudinal reinforcement can significantly improve the shear capacity of beams under high temperature. In addition, the configuration of stirrup reinforcement can effectively reduce the brittle change of vertical deflection when the beam enters the failure stage.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Wang Hui-li ◽  
Feng Guang-qi ◽  
Qin Si-feng

The hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier were researched. The effects of the prestressed tendon ratio, the longitudinal reinforcement ratio, and the stirrup reinforcement ratio on the hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier have been obtained with the fiber model analysis method. The analysis show some results about the prestressed concrete bridge pier. Firstly, greater prestressed tendon ratio and more longitudinal reinforcement can lead to more obvious pier’s hysteresis loop “pinching effect,” smaller residual displacement, and lower energy dissipation capacity. Secondly, the greater the stirrup reinforcement ratio is, the greater the hysteresis loop area is. That also means that bridge piers will have better ductility and stronger shear capacity. The results of the research will provide a theoretical basis for the hysteretic behavior analysis of the prestressed concrete pier.


2020 ◽  
Vol 13 (5) ◽  
pp. 82-89
Author(s):  
Zhangqi Hu ◽  
◽  
Weirong Lv ◽  
Yusheng Wu ◽  
Miao Zhang

Stiffness reduction coefficient of coupling beams (κ) can reflect the stiffness degradation degree at yield and significantly affect the seismic response and the internal force distribution. However, existing calculation methods do not consider the influencing factors comprehensively and have a limited application scope. To effectively predict the stiffness reduction coefficient of conventionally reinforced concrete coupling beams (CCBs), a simplified analysis model was established, and analysis and parameter modification were also implemented. Then, an equation with comprehensive consideration, wide application, and high accuracy was proposed. The proposed equation was verified by comparison with existing test data and calculation methods, and parametric analysis was performed to investigate the independent factors, including the span–depth ratio, longitudinal reinforcement ratio, stirrup ratio and concrete compressive strength. Results show that the independent factors are related to each other, and the span–depth ratio has the greatest influence on the stiffness reduction coefficient of CCBs. Furthermore, κ significantly increases with the longitudinal reinforcement ratio when the coupling beam has a large span–depth ratio, but the stirrup ratio has a bigger role when the span-depth ratio is small. Finally, on the basis of the analysis results, suggestions are made to improve the stiffness reduction coefficient of CCBs. The study results provide a reference for the design and optimization of shear wall and core tube structures.


2016 ◽  
Vol 6 (6) ◽  
pp. 1253-1257
Author(s):  
H. Wang ◽  
Y. Zhang ◽  
S. Qin

The ductility of prestressed concrete pier is studied based on response surface methodology. Referring to the pervious prestressed concrete pier, based on Box-Behnken design, the ductility of 25 prestressed concrete piers is calculated by numerical method. The relationship between longitudinal reinforcement ratio, shear reinforcement ratio, prestressed tendon quantity, concrete compressive strength and ductility factor is gotten. The influence of the longitudinal reinforcement ratio, the shear reinforcement ratio, the prestressed tendon quantity and concrete compressive strength to curvature ductility is discussed. Then the ductility regression equation is deduced. The result showed that the influence of the prestressed tendon quantity to the ductility of prestressed concrete pier is significant. With the increasing of the prestressed tendon quantity, the curvature ductility curved reduces. With the increasing of shear reinforcement ratio and compressive strength of concrete, the curvature ductility increases linearly. And the influence of the longitudinal reinforcement ratio to ductility of the prestressed concrete pier is insignificant. 


Sign in / Sign up

Export Citation Format

Share Document