Seismic performance of steel frame with replaceable low yield point steel connection components and the effect of structural fuses

2021 ◽  
pp. 103862
Author(s):  
Meng Wang ◽  
Chunyu Zhang ◽  
Yi Sun ◽  
Kunpeng Dong
2014 ◽  
Vol 886 ◽  
pp. 408-412
Author(s):  
Xin Wu Wang ◽  
Chang Jiao Hu

The pseudo-dynamic test on the space steel frame with T steel connections was carried out.The dissertation focused on the analysis of the strain,the nodal displacement,the displacement response and the load feedback of the steel frame and discussed the seismic performance of steel frames with T steel connection which could supply the test basis in perfecting the design of steel structure for our country.


2014 ◽  
Vol 580-583 ◽  
pp. 1477-1480
Author(s):  
Xin Wu Wang ◽  
Chang Jiao Hu

To study the effect of damping on seismic performance of steel frame, using the pseudo dynamic test by inputting damping and no damping to analyze the seismic performance of semi-rigid steel frame. Analysis was focused on the effect of damping on the panel zone strain, story drift and interlayer force.The conclusion was that under the more severe earthquake, the structural damping had effects on the seismic performance of semi-rigid steel frame.


2021 ◽  
Author(s):  
Xin Zhao ◽  
Gang Wang ◽  
Jinlun Cai ◽  
Junchen Guo

<p>With the continuous development and progress of society, the structure of high-rise buildings has been paid more and more attention by the engineering community. However, the existing high- rise structure design methods often have a lot of redundancy and have a lot of room for optimization. Most of the existing seismic design methods of high-rise structures are based on engineering experience and manual iterative methods, so that the efficiency of design can not meet the needs of the society. if the method of design automation is adopted, the workload of designers can be greatly reduced and the efficiency of structural design can be improved. Based on the digital modeling theory, this paper proposes a MAD automatic design algorithm, in which the designer provides the initial design of the structure, and the algorithm carries out the modeling, analysis, optimization and design of each stage of the structure, and finally obtains the optimal structure. The structural design module of this algorithm starts from the component level, when the component constraint design meets the limit requirements of the specification, it enters and completes the component constraint design and the global constraint design of the structure in turn. In this paper, taking a ten-story braced steel frame high-rise structure as an example, the optimal design is carried out, and its seismic performance is analyzed. the results show that the MAD automatic design algorithm can distribute the materials to each part reasonably, which can significantly improve the seismic performance of the structure and realize the effective seismic design.</p>


Author(s):  
Kensuke Shiomi

Through the 2011 Tohoku Earthquake or the 2016 Kumamoto Earthquake, much larger earthquakes are considered recently in the seismic designs of large steel-frame structures. When structures are exposed by these severe ground motions, partial destructions in the structures, such as damage or fracture of members could happen. Especially, the low cycle fatigue of steel structures because of the repeated load from these long-term ground motions is a serious problem. However, current seismic performance evaluation method based on nonlinear dynamic analysis considers only elastic and plastic deformation of each member, excluding the fracture of members. If this member fracture happens during earthquakes, there is considered to be many effects on the seismic performance, like the changes of the vibration property, the dynamic response and the energy absorbance capacity of structures. Therefore, the fracture of members is preferably taken into account in the seismic performance evaluation for these large earthquakes. This paper proposes the dynamic analysis method for steel-frame structures which can express the member fracture. Dynamic analyses considering and not considering member fracture under the repeated loads supposing the long-term earthquake are conducted to the FEM model of full-scale structure. By comparing each result, the effects of considering member fracture to the seismic performance such as the dynamic response and the energy absorbance capacity are discussed.


2021 ◽  
Vol 187 ◽  
pp. 106963
Author(s):  
Jian-peng Wei ◽  
Li-min Tian ◽  
Yang Guo ◽  
Hui-yun Qiao ◽  
Yu Bao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document