Behaviour of glulam timber frames with different beam-column connections and braces under reversed cyclic loads

2022 ◽  
pp. 104031
Author(s):  
Shao-Bo Kang ◽  
Gang Xiong ◽  
Shu-Yi Feng ◽  
Hai Zhu ◽  
Shu-Rong Zhou
Keyword(s):  
2020 ◽  
Vol 156 ◽  
pp. 05014
Author(s):  
Jafril Tanjung ◽  
Maidiawati

This study focuses on the experimental works to define the behavior of the reinforced concrete (R/C) frame model with the strengthening of the brick masonry infill by using the embedded reinforcement bars subjected to lateral reversed cyclic loads. A previous study by applying the lateral monotonic static loads showed that the embedded reinforcement bars increased the lateral capacity of the R/C frame and also delayed the failure of the brick masonry infill and R/C frame structure as well. However, in order to define its seismic capacity, a lateral reversed cyclic loading is required. The experimental works in this study were conducted by preparing and testing the 1/4 scaled-down R/C frame specimens represented the first story of the middle multi-story commonly constructed in the earthquake-prone area such as West Sumatera, Indonesia. The R/C frame specimens were two R/C frames with brick masonry infills where one of them strengthened by the embedded reinforced bars. All specimens were tested for applying the lateral reversed cyclic loads. The applied lateral load, the lateral displacement, the progressive cracks, and the failure mode of the specimens were observed and recorded during experimental works. As it was expected, the presence of the embedded reinforced bars in the brick masonry infills increases the seismic capacity and stiffness of the R/C specimens and also delayed the failure of the specimens. The experimental results in this study imply the simple strengthening method for the brick masonry infills.


Author(s):  
Shervin Shameli Derakshan ◽  
Lina Zhou ◽  
Chun Ni

Wood shear walls are the main lateral load resisting systems in light wood frame buildings to resist the wind and seismic loads. Sheathing to lumber nail connections are regarded as the key components that control the resistance and failure modes of wood shear walls. Considerable experimental tests have been conducted on performance of nail joints or wood shear walls under both static and reversed cyclic loads. However, these tests were usually conducted under different loading speed causing specimen failure in 1 min to an hour. It is unclear how the loading speed will affect the test results of nail joints or wood shear walls. Research on these topics is limited. This paper aims to evaluate the effect of loading speed on the mechanical characteristics of nail joints. 72 specimens have been tested under various loading speeds, ranging from 0.05 mm/s to 0.5 mm/s for monotonic tests and 1.5 mm/s to 15 mm/s for reversed cyclic tests. The range of loading speed was selected based on the total estimated loading time that both monotonic and reversed cyclic tests fail within around 1 min to 10 min. Two groups of nail joints, comprising two common nail sizes and two sheathing thicknesses, were assessed under both monotonic and reversed cyclic loads. From the test results, the effect of loading speed on the mechanical properties of nail joints was determined.


2001 ◽  
Vol 12 (6) ◽  
pp. 615-632
Author(s):  
Hiroshi Yokota ◽  
Hazem M.F. El-Bakry
Keyword(s):  

ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 3119-3128 ◽  
Author(s):  
Beatrice Faggiano ◽  
Antonio Formisano ◽  
Generoso Vaiano ◽  
Raffaele Landolfo ◽  
Federico Massimo Mazzolani

Sign in / Sign up

Export Citation Format

Share Document