scholarly journals In vitro cell surface markers are insufficient to identify in vivo/in situ multipotent synovial mesenchymal stem cells isolated from normal or osteoarthritic knees

2017 ◽  
Vol 25 ◽  
pp. S27-S28
Author(s):  
N. Aljezani ◽  
A. Affan ◽  
P. Railton ◽  
J. Powell ◽  
R. Krawetz
2015 ◽  
Vol 87 (11) ◽  
pp. 1001-1011 ◽  
Author(s):  
Jaroslav Denkovskij ◽  
Romualdas Rudys ◽  
Eiva Bernotiene ◽  
Mindaugas Minderis ◽  
Saulius Bagdonas ◽  
...  

Biorheology ◽  
2008 ◽  
Vol 45 (3-4) ◽  
pp. 513-526 ◽  
Author(s):  
Christel Cournil-Henrionnet ◽  
Céline Huselstein ◽  
Yun Wang ◽  
Laurent Galois ◽  
Didier Mainard ◽  
...  

Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2813-2820 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei M. Wu ◽  
Francis N. Karanu ◽  
Mike Keeney ◽  
...  

Recent evidence indicates that human hematopoietic stem cell properties can be found among cells lacking CD34 and lineage commitment markers (CD34−Lin−). A major barrier in the further characterization of human CD34− stem cells is the inability to detect this population using in vitro assays because these cells only demonstrate hematopoietic activity in vivo. Using cell surface markers AC133 and CD7, subfractions were isolated within CD34−CD38−Lin− and CD34+CD38−Lin− cells derived from human cord blood. Although the majority of CD34−CD38−Lin− cells lack AC133 and express CD7, an extremely rare population of AC133+CD7− cells was identified at a frequency of 0.2%. Surprisingly, these AC133+CD7− cells were highly enriched for progenitor activity at a frequency equivalent to purified fractions of CD34+ stem cells, and they were the only subset among the CD34−CD38−Lin− population capable of giving rise to CD34+ cells in defined liquid cultures. Human cells were detected in the bone marrow of non-obese/severe combined immunodeficiency (NOD/SCID) mice 8 weeks after transplantation of ex vivo–cultured AC133+CD7− cells isolated from the CD34−CD38−Lin− population, whereas 400-fold greater numbers of the AC133−CD7− subset had no engraftment ability. These studies provide novel insights into the hierarchical relationship of the human stem cell compartment by identifying a rare population of primitive human CD34− cells that are detectable after transplantation in vivo, enriched for in vitro clonogenic capacity, and capable of differentiation into CD34+ cells.


Blood ◽  
2012 ◽  
Vol 120 (17) ◽  
pp. 3436-3443 ◽  
Author(s):  
Yan Li ◽  
Feng Lin

Abstract Despite the potent immunosuppressive activity that mesenchymal stem cells (MSCs) display in vitro, recent clinical trial results are disappointing, suggesting that MSC viability and/or function are greatly reduced after infusion. In this report, we demonstrated that human MSCs activated complement of the innate immunity after their contact with serum. Although all 3 known intrinsic cell-surface complement regulators were present on MSCs, activated complement overwhelmed the protection of these regulators and resulted in MSCs cytotoxicity and dysfunction. In addition, autologous MSCs suffered less cellular injury than allogeneic MSCs after contacting serum. All 3 complement activation pathways were involved in generating the membrane attack complex to directly injure MSCs. Supplementing an exogenous complement inhibitor, or up-regulating MSC expression levels of CD55, one of the cell-surface complement regulators, helped to reduce the serum-induced MSC cytotoxicity. Finally, adoptively transferred MSCs in complement deficient mice or complement-depleted mice showed reduced cellular injury in vivo compared with those in wild type mice. These results indicate that complement is integrally involved in recognizing and injuring MSCs after their infusion, suggesting that autologous MSCs may have ad-vantages over allogeneic MSCs, and that inhibiting complement activation could be a novel strategy to improve existing MSC-based therapies.


Author(s):  
Suzanne Sober ◽  
Homa Darmani ◽  
Dana Alhattab ◽  
Abdalla Awidi

IntroductionIdentification and purification of mesenchymal stem cells (MSCs) expanded in culture for therapeutic use is crucial for improved yield and optimal results. Fibroblasts are the most common cell type in connective tissue and are commonly found as contaminants of MSC cultures, affecting cell yield and potentially causing tumor formation after cell transplantation. In the current study, we wished to identify cell surface markers that can differentiate MSCs of different origins from fibroblasts.Material and methodsMSCs were isolated from bone marrow, adipose tissue, Wharton’s jelly and placental tissue and fibroblasts were isolated from foreskin (as a negative control) in order to examine the differences in the expression of a panel of 14 different cell surface markers using multiplex flow cytometry.ResultsOur results indicate that the following markers could be useful in differentiating between fibroblasts and MSCs derived from: adipose tissue - CD79a, CD105, CD106, CD146, and CD271; Wharton’s jelly - CD14, CD56 and CD105; bone marrow - CD105, CD106, and CD146; placental tissue - CD14, CD105, and CD146. Furthermore, we found that, contradictory to previous studies, CD26 is not fibroblast-specific.ConclusionsIn conclusion, the results of our study indicate that cell surface markers may prove to be a useful tool in the discrimination between MSCs of different origins and fibroblasts and thus may be used to authenticate the identity of the isolated cells.


2020 ◽  
Author(s):  
Ilona Uzieliene ◽  
Edvardas Bagdonas ◽  
Kazuto Hoshi ◽  
Tomoaki Sakamoto ◽  
Atsuhiko Hikita ◽  
...  

Abstract Background: Due to its low capacity for self-repair, articular cartilage is highly susceptible to damage and deterioration, which leads to the development of degenerative joint diseases such as osteoarthritis. Menstrual blood-derived mesenchymal stem cells (MenSCs) are much less characterized compared to bone marrow mesenchymal stem cells (BMMSCs). However, MenSCs seem an attractive alternative to classical BMMSCs due to ease of access and broader differentiation capacity. The aim of this study was to evaluate chondrogenic differentiation potential of MenSCs and BMMSCs stimulated with transforming growth factor β (TGF-β3) and activin A, member of the TGF-β superfamily of proteins.Methods: MenSCs (n=6) and BMMSCs (n=5) were isolated from different healthy donors. Expression of cell surface markers CD90, CD73, CD105, CD44, CD45, CD14, CD36, CD55, CD54, CD63, CD106, CD34, CD10, Notch1 was analysed by flow cytometry. Cell proliferation capacity was determined using CCK-8 proliferation kit. Adipogenic differentiation capacity was evaluated according to Oil-Red staining, osteogenic differentiation - Alizarin Red staining. Chondrogenic differentiation (Activin A and TGF-β3 stimulation) was induced in vitro and in vivo (subcutaneous scaffolds in nude BALB/c mice) and investigated by histologically and by expression of chondrogenic genes (collagen type II, aggrecan). Activin A protein production was evaluated by ELISA.Results: MenSCs exhibited a higher proliferation rate, as compared to BMMSCs, and a different expression profile of several cell surface markers. Activin A stimulated collagen type II gene expression and glycosaminoglycan synthesis in TGF-β3 treated MenSCs but not in BMMSCs, both in vitro and in vivo, although the effects of TGF-β3 alone were more pronounced in BMMSCs in vitro. Conclusion: These data suggest that activin A exerts differential effects on the induction of chondrogenic differentiation in MenSCs vs. BMMSCs, which implies that different mechanisms of chondrogenic regulation are activated in these cells. Following further optimisation of differentiation protocols and the choice of growth factors, potentially including activin A, MenSCs may turn out to be a promising population of stem cells for the development of cell-based therapies with the capacity to stimulate cartilage repair and regeneration.Trial registration: Not applicable.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Martin H. Maurer

Mesenchymal stem cells (MSCs) are pluripotent cells isolated from the bone marrow and various other organs. They are able to proliferate and self-renew, as well as to give rise to progeny of at least the osteogenic, chondrogenic, and adipogenic lineages. Despite this functional definition, MSCs can also be defined by their expression of a distinct set of cell surface markers. In the current paper, studies investigating the proteome of human MSCs are reviewed with the aim to identify common protein markers of MSCs. The proteomic analysis of MSCs revealed a distinct set of proteins representing the basic molecular inventory, including proteins for (i) cell surface markers, (ii) the responsiveness to growth factors, (iii) the reuse of developmental signaling cascades in adult stem cells, (iv) the interaction with molecules of the extracellular matrix, (v) the expression of genes regulating transcription and translation, (vi) the control of the cell number, and (vii) the protection against cellular stress.


Sign in / Sign up

Export Citation Format

Share Document