scholarly journals Ex vivo inhibition of JAK and IKK preserves cartilage formation in catabolically stimulated bovine articular cartilage

2018 ◽  
Vol 26 ◽  
pp. S132
Author(s):  
C.S. Thudium ◽  
C.F. Kjelgaard-Petersen ◽  
N. Sharma ◽  
A. Mobasheri ◽  
M.A. Karsdal ◽  
...  
2019 ◽  
Vol 165 ◽  
pp. 91-98 ◽  
Author(s):  
Cecilie F. Kjelgaard-Petersen ◽  
Neha Sharma ◽  
Ashref Kayed ◽  
Morten A. Karsdal ◽  
Ali Mobasheri ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 546
Author(s):  
Paula Casal-Beiroa ◽  
Vanesa Balboa-Barreiro ◽  
Natividad Oreiro ◽  
Sonia Pértega-Díaz ◽  
Francisco J. Blanco ◽  
...  

Osteoarthritis (OA) is the most common rheumatic disease, characterized by progressive articular cartilage degradation. Raman spectroscopy (RS) has been recently proposed as a label-free tool to detect molecular changes in musculoskeletal tissues. We used cartilage samples derived from human femoral heads to perform an ex vivo study of different Raman signals and ratios, related to major and minor molecular components of articular cartilage, hereby proposed as candidate optical biomarkers for OA. Validation was performed against the radiological Kellgren–Lawrence (K-L) grading system, as a gold standard, and cross-validated against sulfated glycosaminoglycans (sGAGs) and total collagens (Hyp) biochemical contents. Our results showed a significant decrease in sGAGs (SGAGs, A1063 cm−1/A1004 cm−1) and proteoglycans (PGs, A1375 cm−1/A1004 cm−1) and a significant increase in collagen disorganization (ColD/F, A1245 cm−1/A1270 cm−1), with OA severity. These were correlated with sGAGs or Hyp contents, respectively. Moreover, the SGAGs/HA ratio (A1063 cm−1/A960 cm−1), representing a functional matrix, rich in proteoglycans, to a mineralized matrix-hydroxyapatite (HA), was significantly lower in OA cartilage (K-L I vs. III–IV, p < 0.05), whilst the mineralized to collagenous matrix ratio (HA/Col, A960 cm−1/A920 cm−1) increased, being correlated with K-L. OA samples showed signs of tissue mineralization, supported by the presence of calcium crystals-related signals, such as phosphate, carbonate, and calcium pyrophosphate dihydrate (MGP, A960 cm−1/A1004 cm−1, MGC, A1070 cm−1/A1004 cm−1 and A1050 cm−1/A1004 cm−1). Finally, we observed an increase in lipids ratio (IL, A1450 cm−1/A1670 cm−1) with OA severity. As a conclusion, we have described the molecular fingerprint of hip cartilage, validating a panel of optical biomarkers and the potential of RS as a complementary diagnostic tool for OA.


2001 ◽  
Vol 280 (1) ◽  
pp. R115-R122 ◽  
Author(s):  
Elvire Gouze-Decaris ◽  
Lionel Philippe ◽  
Alain Minn ◽  
Philippe Haouzi ◽  
Pierre Gillet ◽  
...  

This study was designed to investigate the pathways involved in neurogenic-mediated articular cartilage damage triggered by a nonsystemic distant subcutaneous or intra-articular inflammation. The cartilage damage was assessed 24 h after subcutaneous or intra-articular complete Freund's adjuvant (CFA) injection measuring patellar proteoglycan (PG) synthesis (ex vivo [Na2 35SO4] incorporation) in 96 Wistar rats. Unilateral subcutaneous or intra-articular injection of CFA induced significant decrease (25–29%) in PG synthesis in both patellae. Chronic administration of capsaicin (50 mg · kg−1 · day−1 during 4 days), which blunted the normal response of C fiber stimulation, prevented the bilateral significant decrease in cartilage synthesis. Similarly, intrathecal injection of MK-801 (10 nmol/day during 5 days), which blocked the glutamatergic synaptic transmission at the dorsal horn of signal originating in primary afferent C fibers, eliminated the CFA-induced PG synthesis decrease in both patellae. Chemical sympathectomy, induced by guanethidine (12.5 mg · kg−1 · day−1 during 6 wk), also prevented PG synthesis alteration. Finally, compression of the spinal cord at the T3-T5 level had a similar protective effect on the reduction of [Na2 35SO4] incorporation. It is concluded that the signal that triggers articular cartilage synthesis damage induced by a distant local inflammation 1) is transmitted through the afferent C fibers, 2) makes glutamatergic synaptic connections with the preganglionic neurons of the sympathetic system, and 3) involves spinal and supraspinal pathways.


Biochemistry ◽  
1994 ◽  
Vol 33 (16) ◽  
pp. 4836-4846 ◽  
Author(s):  
Gavin M. Brown ◽  
Thomas N. Huckerby ◽  
Haydn G. Morris ◽  
Beverley L. Abram ◽  
Ian A. Nieduszynski

2003 ◽  
Vol 125 (2) ◽  
pp. 180-188 ◽  
Author(s):  
C. P. Neu ◽  
M. L. Hull

Recent magnetic resonance imaging (MRI) techniques have shown potential for measuring non-uniform deformations throughout the volume (i.e. three-dimensional (3D) deformations) in small orthopedic tissues such as articular cartilage. However, to analyze cartilage deformation using MRI techniques, a system is required which can construct images from multiple acquisitions of MRI signals from the cartilage in both the undeformed and deformed states. The objectives of the work reported in this article were to 1) design an apparatus that could apply highly repeatable cyclic compressive loads of 400 N and operate in the bore of an MRI scanner, 2) demonstrate that the apparatus and MRI scanner can be successfully integrated to observe 3D deformations in a phantom material, 3) use the apparatus to determine the load cycle necessary to achieve a steady-state deformation response in normal bovine articular cartilage samples using a flat-surfaced and nonporous indentor in unconfined compression. Composed of electronic and pneumatic components, the apparatus regulated pressure to a double-acting pneumatic cylinder so that (1) load-controlled compression cycles were applied to cartilage samples immersed in a saline bath, (2) loading and recovery periods within a cycle varied in time duration, and (3) load magnitude varied so that the stress applied to cartilage samples was within typical physiological ranges. In addition the apparatus allowed gating for MR image acquisition, and operation within the bore of an MRI scanner without creating image artifacts. The apparatus demonstrated high repeatability in load application with a standard deviation of 1.8% of the mean 400 N load applied. When the apparatus was integrated with an MRI scanner programmed with appropriate pulse sequences, images of a phantom material in both the undeformed and deformed states were constructed by assembling data acquired through multiple signal acquisitions. Additionally, the number of cycles to reach a steady-state response in normal bovine articular cartilage was 49 for a total cycle duration of 5 seconds, but decreased to 33 and 27 for increasing total cycle durations of 10 and 15 seconds, respectively. Once the steady-state response was achieved, 95% of all displacements were within ±7.42μm of the mean displacement, indicating that the displacement response to the cyclic loads was highly repeatable. With this performance, the MRI-loading apparatus system meets the requirements to create images of articular cartilage from which 3D deformation can be determined.


Sign in / Sign up

Export Citation Format

Share Document