biochemical validation
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 19)

H-INDEX

19
(FIVE YEARS 3)

RNA ◽  
2021 ◽  
pp. rna.078188.120
Author(s):  
Tomoya Fujita ◽  
Takeshi Yokoyama ◽  
Mikako Shirouzu ◽  
Hideki Taguchi ◽  
Takuhiro Ito ◽  
...  

Ribosome pauses are associated with various cotranslational events and determine the fate of mRNAs and proteins. Thus, the identification of precise pause sites across the transcriptome is desirable; however, the landscape of ribosome pauses in bacteria remains ambiguous. Here, we harness monosome and disome (or collided ribosome) profiling strategies to survey ribosome pause sites in Escherichia coli. Compared to eukaryotes, ribosome collisions in bacteria showed remarkable differences: a low frequency of disomes at stop codons, collisions occurring immediately after 70S assembly on start codons, and shorter queues of ribosomes trailing upstream. The pause sites corresponded with the biochemical validation by integrated nascent chain profiling (iNP) to detect polypeptidyl-tRNA, an elongation intermediate. Moreover, the subset of those sites showed puromycin resistance, presenting slow peptidyl transfer. Among the identified sites, the ribosome pause at Asn586 of ycbZ was validated by biochemical reporter assay, tRNA sequencing (tRNA-Seq), and cryo-electron microscopy (cryo-EM) experiments. Our results provide a useful resource for ribosome stalling sites in bacteria


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stella Tommasi ◽  
Niccolo Pabustan ◽  
Meng Li ◽  
Yibu Chen ◽  
Kimberly D. Siegmund ◽  
...  

AbstractWe constructed and analyzed the whole transcriptome in leukocytes of healthy adult vapers (with/without a history of smoking), ‘exclusive’ cigarette smokers, and controls (non-users of any tobacco products). Furthermore, we performed single-gene validation of expression data, and biochemical validation of vaping/smoking status by plasma cotinine measurement. Computational modeling, combining primary analysis (age- and sex-adjusted limmaVoom) and sensitivity analysis (cumulative e-liquid- and pack-year modeling), revealed that ‘current’ vaping, but not ‘past’ smoking, is significantly associated with gene dysregulation in vapers. Comparative analysis of the gene networks and canonical pathways dysregulated in vapers and smokers showed strikingly similar patterns in the two groups, although the extent of transcriptomic changes was more pronounced in smokers than vapers. Of significance is the preferential targeting of mitochondrial genes in both vapers and smokers, concurrent with impaired functional networks, which drive mitochondrial DNA-related disorders. Equally significant is the dysregulation of immune response genes in vapers and smokers, modulated by upstream cytokines, including members of the interleukin and interferon family, which play a crucial role in inflammation. Our findings accord with the growing evidence on the central role of mitochondria as signaling organelles involved in immunity and inflammatory response, which are fundamental to disease development.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 546
Author(s):  
Paula Casal-Beiroa ◽  
Vanesa Balboa-Barreiro ◽  
Natividad Oreiro ◽  
Sonia Pértega-Díaz ◽  
Francisco J. Blanco ◽  
...  

Osteoarthritis (OA) is the most common rheumatic disease, characterized by progressive articular cartilage degradation. Raman spectroscopy (RS) has been recently proposed as a label-free tool to detect molecular changes in musculoskeletal tissues. We used cartilage samples derived from human femoral heads to perform an ex vivo study of different Raman signals and ratios, related to major and minor molecular components of articular cartilage, hereby proposed as candidate optical biomarkers for OA. Validation was performed against the radiological Kellgren–Lawrence (K-L) grading system, as a gold standard, and cross-validated against sulfated glycosaminoglycans (sGAGs) and total collagens (Hyp) biochemical contents. Our results showed a significant decrease in sGAGs (SGAGs, A1063 cm−1/A1004 cm−1) and proteoglycans (PGs, A1375 cm−1/A1004 cm−1) and a significant increase in collagen disorganization (ColD/F, A1245 cm−1/A1270 cm−1), with OA severity. These were correlated with sGAGs or Hyp contents, respectively. Moreover, the SGAGs/HA ratio (A1063 cm−1/A960 cm−1), representing a functional matrix, rich in proteoglycans, to a mineralized matrix-hydroxyapatite (HA), was significantly lower in OA cartilage (K-L I vs. III–IV, p < 0.05), whilst the mineralized to collagenous matrix ratio (HA/Col, A960 cm−1/A920 cm−1) increased, being correlated with K-L. OA samples showed signs of tissue mineralization, supported by the presence of calcium crystals-related signals, such as phosphate, carbonate, and calcium pyrophosphate dihydrate (MGP, A960 cm−1/A1004 cm−1, MGC, A1070 cm−1/A1004 cm−1 and A1050 cm−1/A1004 cm−1). Finally, we observed an increase in lipids ratio (IL, A1450 cm−1/A1670 cm−1) with OA severity. As a conclusion, we have described the molecular fingerprint of hip cartilage, validating a panel of optical biomarkers and the potential of RS as a complementary diagnostic tool for OA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sathyanarayanan Ranganayaki ◽  
Neema Jamshidi ◽  
Mohamad Aiyaz ◽  
Santhosh-Kumar Rashmi ◽  
Narayanappa Gayathri ◽  
...  

AbstractMitochondrial dysfunction and neurodegeneration underlie movement disorders such as Parkinson’s disease, Huntington’s disease and Manganism among others. As a corollary, inhibition of mitochondrial complex I (CI) and complex II (CII) by toxins 1-methyl-4-phenylpyridinium (MPP+) and 3-nitropropionic acid (3-NPA) respectively, induced degenerative changes noted in such neurodegenerative diseases. We aimed to unravel the down-stream pathways associated with CII inhibition and compared with CI inhibition and the Manganese (Mn) neurotoxicity. Genome-wide transcriptomics of N27 neuronal cells exposed to 3-NPA, compared with MPP+ and Mn revealed varied transcriptomic profile. Along with mitochondrial and synaptic pathways, Autophagy was the predominant pathway differentially regulated in the 3-NPA model with implications for neuronal survival. This pathway was unique to 3-NPA, as substantiated by in silico modelling of the three toxins. Morphological and biochemical validation of autophagy markers in the cell model of 3-NPA revealed incomplete autophagy mediated by mechanistic Target of Rapamycin Complex 2 (mTORC2) pathway. Interestingly, Brain Derived Neurotrophic Factor (BDNF), which was elevated in the 3-NPA model could confer neuroprotection against 3-NPA. We propose that, different downstream events are activated upon neurotoxin-dependent CII inhibition compared to other neurotoxins, with implications for movement disorders and regulation of autophagy could potentially offer neuroprotection.


ACS Omega ◽  
2020 ◽  
Vol 5 (51) ◽  
pp. 33151-33161
Author(s):  
Akshita Gupta ◽  
Chitra Rani ◽  
Pradeep Pant ◽  
Viswanathan Vijayan ◽  
Naval Vikram ◽  
...  

Biochemistry ◽  
2020 ◽  
Vol 59 (49) ◽  
pp. 4654-4662
Author(s):  
Hubert Salvail ◽  
Aparaajita Balaji ◽  
Diane Yu ◽  
Adam Roth ◽  
Ronald R. Breaker

2020 ◽  
Author(s):  
Hubert Salvail ◽  
Aparaajita Balaji ◽  
Diane Yu ◽  
Adam Roth ◽  
Ronald R. Breaker

ABSTRACTAn intriguing consequence of ongoing riboswitch discovery efforts is the occasional identification of metabolic or toxicity response pathways for unusual ligands. Recently, we reported the experimental validation of three distinct bacterial riboswitch classes that regulate gene expression in response to the selective binding of a guanidinium ion. These riboswitch classes, called guanidine-I, -II and -III, regulate numerous genes whose protein products include previously misannotated guanidine exporters and enzymes that degrade guanidine via an initial carboxylation reaction. Guanidine is now recognized as the primal substrate of many multidrug efflux pumps that are important for bacterial resistance to certain antibiotics. Guanidine carboxylase enzymes had long been annotated as urea carboxylase enzymes but are now understood to participate in guanidine degradation. Herein we report the existence of a fourth riboswitch class for this ligand, called “guanidine-IV”. Members of this class use a novel aptamer to selectively bind guanidine and use an unusual expression platform arrangement that is predicted to activate gene expression when ligand is present. The wide distribution of this abundant riboswitch class, coupled with the striking diversity of other guanidine-sensing RNAs, demonstrates that many bacterial species maintain sophisticated sensory and genetic mechanisms to avoid guanidine toxicity. This finding further highlights the mystery regarding the natural source of this nitrogen-rich chemical moiety.


2020 ◽  
Author(s):  
W. Frank Lenoir ◽  
Micaela Morgado ◽  
Peter C DeWeirdt ◽  
Megan McLaughlin ◽  
Audrey L Griffith ◽  
...  

AbstractCRISPR knockout screens in hundreds of cancer cell lines have revealed a substantial number of context-specific essential genes that, when associated with a biomarker such as lineage or oncogenic mutation, offer candidate tumor-specific vulnerabilities for targeted therapies or novel drug development. Data-driven analysis of knockout fitness screens also yields many other functionally coherent modules that show emergent essentiality or, in some cases, the opposite phenotype of faster proliferation. We develop a systematic approach to classify these suppressors of proliferation, which are highly enriched for tumor suppressor genes, and define a network of 103 genes in 22 discrete modules. One surprising module contains several elements of the glycerolipid biosynthesis pathway and operates exclusively in a subset of AML lines, which we call Fatty Acid Synthesis/Tumor Suppressor (FASTS) cells. Genetic and biochemical validation indicates that these cells operate at the limit of their carrying capacity for saturated fatty acids. Overexpression of saturated acyltransferase GPAT4 or its regulator CHP1 confers a survival advantage in an age-matched cohort of AML patients, indicating the in vitro phenotype reflects a clinically relevant subtype, and suggesting a previously unrecognized risk in clinical trials for fatty acid synthesis pathway inhibitors.


Sign in / Sign up

Export Citation Format

Share Document