Brain tissue saving effects by single-dose intralesional administration of Neuroprotectin D1 on experimental focal penetrating brain injury in rats

2019 ◽  
Vol 64 ◽  
pp. 227-233 ◽  
Author(s):  
Rand Wilcox Vanden Berg ◽  
Johan Davidsson ◽  
Erik Lidin ◽  
Maria Angéria ◽  
Mårten Risling ◽  
...  
2021 ◽  
Vol 11 (7) ◽  
pp. 889
Author(s):  
Anton D. Filev ◽  
Denis N. Silachev ◽  
Ivan A. Ryzhkov ◽  
Konstantin N. Lapin ◽  
Anastasiya S. Babkina ◽  
...  

The overactivation of inflammatory pathways and/or a deficiency of neuroplasticity may result in the delayed recovery of neural function in traumatic brain injury (TBI). A promising approach to protecting the brain tissue in TBI is xenon (Xe) treatment. However, xenon’s mechanisms of action remain poorly clarified. In this study, the early-onset expression of 91 target genes was investigated in the damaged and in the contralateral brain areas (sensorimotor cortex region) 6 and 24 h after injury in a TBI rat model. The expression of genes involved in inflammation, oxidation, antioxidation, neurogenesis and neuroplasticity, apoptosis, DNA repair, autophagy, and mitophagy was assessed. The animals inhaled a gas mixture containing xenon and oxygen (ϕXe = 70%; ϕO2 25–30% 60 min) 15–30 min after TBI. The data showed that, in the contralateral area, xenon treatment induced the expression of stress genes (Irf1, Hmox1, S100A8, and S100A9). In the damaged area, a trend towards lower expression of the inflammatory gene Irf1 was observed. Thus, our results suggest that xenon exerts a mild stressor effect in healthy brain tissue and has a tendency to decrease the inflammation following damage, which might contribute to reducing the damage and activating the early compensatory processes in the brain post-TBI.


Author(s):  
Mohammad Jamali ◽  
Iman Ahrari ◽  
Keyvan Eghbal ◽  
Arash Saffarrian ◽  
Abbas Rakhsha ◽  
...  

Abstract Introduction Low-velocity penetrating brain injury is not prevalent. In some conditions such as childhood, and with the penetration of a pellet in weak spots of skull, low-velocity penetrating brain injury is expected; however, high-velocity projectiles have also been reported as the cause of severe brain injuries. One of the complications of penetrating brain injury is infection, in which different types of microorganisms play a role. The Streptococcus genus is the leading cause of abscess formation in non-traumatic patients. Multiple brain abscesses are not common. Case Presentation A 10-year-old boy with penetrating brain injury caused by an air gun pellet, who developed signs and symptoms of high intracranial pressure 18 days after the trauma. After the imaging scans and the detection of multiple brain abscesses and severe brain edema, prompt surgical intervention was performed for all three lesions in a single operation. The culture of a pus specimen was positive for Streptococcus species, and, with adequate antibiotic therapy, the patient was discharged from the hospital in good condition. Conclusion Brain injury with air gun shot is not prevalent. The penetration of a low-velocity air gun pellet in weak points of the skull (such as the orbit, the squamous portion of the temporal bone, and the cranial suture), specially in children, can cause significant brain injuries.


Sign in / Sign up

Export Citation Format

Share Document