Validity of skeletal muscle ultrasound as a screening tool in the assessment of patients with suspected limb-girdle muscular dystrophy

Author(s):  
Rasha M. Ibrahim ◽  
M. Amr Abdel-Monem ◽  
Haitham M. Hamdy ◽  
Ahmed M. Elsadek ◽  
Ahmed M. Bassiouny ◽  
...  
QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Rasha M Ibrahim ◽  
Haitham M Hamdy ◽  
Amr A Mohammed ◽  
Ahmed M Elsadek ◽  
Ahmed M Bassiouny ◽  
...  

Abstract Background Limb-girdle muscular dystrophies (LGMDs) are a clinically and genetically heterogeneous group of disorders characterized by progressive muscle weakness and degenerative muscle changes. Studies have shown that ultrasound can be useful both for diagnosis and follow-up of LGMDs patients. Objectives This study aims to measure the sensitivity and the specificity of muscle ultrasound in assessment of suspected limb girdle muscular dystrophy patients. Subjects and Methods This cross-sectional descriptive study was conducted on Fifty-five patients with suspected LGMD from neuromuscular unit, myology clinic, Ain Shams University hospitals and eight healthy subjects. Age was above 2 years. Both sexes were included in the study. They underwent real-time B-mode ultrasonography performed with using Logiq p9 General Electric ultrasound machine and General Electric 7-11.5 MHZ linear array ultrasound probe. All ultrasound images have been obtained and scored by a single examiner and muscle echo intensity was visually graded semiquantitative according to Heckmatt's scale. The examiner was blinded to the muscle biopsy results and clinical evaluations. Results Statistical analysis revealed that the diagnostic performance of muscle US (Heckmatt’s score) in LGMD is most sensitive when calculated in all examined upper limb and lower limb muscles, followed by lower limb muscles alone. US of upper limb was found to be the least sensitive. Conclusions Muscle ultrasound is a practical and reproducible and valid tool that can be used in assessment of suspected LGMD patients.


2001 ◽  
Vol 79 (5-6) ◽  
pp. 254-261 ◽  
Author(s):  
Stephen Baghdiguian ◽  
Isabelle Richard ◽  
Marianne Martin ◽  
Peter Coopman ◽  
Jacques S. Beckmann ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. e230647
Author(s):  
Rajkumar Rajendram ◽  
Fahad AlDhahri ◽  
Naveed Mahmood ◽  
Mubashar Kharal

Muscular dystrophies are a heterogeneous group of disorders that commonly involve cardiac and skeletal muscle. Comprehensive guidelines for the management of cardiac failure and arrhythmias are available. However, the studies from which their recommendations are derived did not include any patients with muscular dystrophy. Some medications (eg, betablockers) may have significant side effects in this cohort. In some situations the use of agents with unique mechanisms of action such as ivabradine (a ‘funny’ channel inhibitor) may be more appropriate. Use of ivabradine has not previously been reported in limb girdle muscular dystrophy (LGMD). We describe the course of a patient with LGMD type 2I, cardiomyopathy and inappropriate sinus tachycardia treated with ivabradine. As advances in respiratory support have improved the outcomes of patients with muscular dystrophy; the prognostic significance of cardiac disease has increased. Ivabradine is tolerated and may reduce symptoms, morbidity and mortality in this cohort.


1999 ◽  
Vol 23 (4) ◽  
pp. 609-614 ◽  
Author(s):  
James D. McDaniel ◽  
John L. Ulmer ◽  
Robert W. Prost ◽  
Malgorzata B. Franczak ◽  
Safwan Jaradeh ◽  
...  

2003 ◽  
Vol 14 (10) ◽  
pp. 4075-4088 ◽  
Author(s):  
Daniela Volonte ◽  
Aaron J. Peoples ◽  
Ferruccio Galbiati

Caveolae are vesicular invaginations of the plasma membrane. Caveolin-3 is the principal structural component of caveolae in skeletal muscle cells in vivo. We have recently generated caveolin-3 transgenic mice and demonstrated that overexpression of wild-type caveolin-3 in skeletal muscle fibers is sufficient to induce a Duchenne-like muscular dystrophy phenotype. In addition, we have shown that caveolin-3 null mice display mild muscle fiber degeneration and T-tubule system abnormalities. These data are consistent with the mild phenotype observed in Limb-girdle muscular dystrophy-1C (LGMD-1C) in humans, characterized by a ∼95% reduction of caveolin-3 expression. Thus, caveolin-3 transgenic and null mice represent valid mouse models to study Duchenne muscular dystrophy (DMD) and LGMD-1C, respectively, in humans. Here, we derived conditionally immortalized precursor skeletal muscle cells from caveolin-3 transgenic and null mice. We show that overexpression of caveolin-3 inhibits myoblast fusion to multinucleated myotubes and lack of caveolin-3 enhances the fusion process. M-cadherin and microtubules have been proposed to mediate the fusion of myoblasts to myotubes. Interestingly, we show that M-cadherin is downregulated in caveolin-3 transgenic cells and upregulated in caveolin-3 null cells. For the first time, variations of M-cadherin expression have been linked to a muscular dystrophy phenotype. In addition, we demonstrate that microtubules are disorganized in caveolin-3 null myotubes, indicating the importance of the cytoskeleton network in mediating the phenotype observed in these cells. Taken together, these results propose caveolin-3 as a key player in myoblast fusion and suggest that defects of the fusion process may represent additional molecular mechanisms underlying the pathogenesis of DMD and LGMD-1C in humans.


Circulation ◽  
2013 ◽  
Vol 128 (10) ◽  
pp. 1094-1104 ◽  
Author(s):  
Carinne Roudaut ◽  
Florence Le Roy ◽  
Laurence Suel ◽  
Jérôme Poupiot ◽  
Karine Charton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document