calpain 3
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 13)

H-INDEX

38
(FIVE YEARS 1)

2021 ◽  
Vol 15 (3) ◽  
pp. 85-91
Author(s):  
Inna V. Sharkova ◽  
Maria V. Bulakh ◽  
Liudmila А. Bessonova ◽  
Olga A. Shchagina ◽  
Elena L. Dadaly

Introduction. Limb-girdle muscular dystrophy (LGMD) includes more than 30 forms caused by mutations in genes located on autosomes. The most common form is calpain-3-related LGMD, with autosomal recessive inheritance pattern (OMIM 253600). An autosomal dominant form of LGMD (OMIM 618129) caused by c.643_663del heterozygous mutation in the CAPN3 gene is also supposed to exist. This article describes a family case of LGMD caused by mutations in the CAPN3 gene with pseudodominant inheritance. Materials and methods. Two patients with LGMD were studied: a 59-year-old woman and her 38-year-old daughter. Clinical, genealogical and molecular genetics methods were used: limb girdle muscular dystrophy MPS panel, Sanger sequencing of DNA of the proband, her affected daughter, and six first- and second-degree relatives across four generations. Results. It was found that identical variants of the nucleotide sequence, c.598_612del and c.1746-20CG, identified in the CAPN3 gene of the proband and her daughter, are in the trans position (compound heterozygous state), causing autosomal recessive calpain-3-related LGMD. This is an example of an incredibly rare pseudodominant inheritance of an autosomal recessive disease, established through indirect evidence that the probands husband is a heterozygous carrier of a nucleotide substitution in the CAPN3 gene. Conclusion. It is crucial to examine the marriage partner for heterozygous carrier status of a gene mutation responsible for the disease in family planning and when clarifying the childs prognosis for a patient with an autosomal recessive disease. Considering the existence of a late-onset (after 30 years) LGMD phenotype associated with the CAPN3 gene, differential diagnosis should begin with testing this gene in families with late disease onset.


2021 ◽  
Vol 22 (19) ◽  
pp. 10613
Author(s):  
Yulia Baburuna ◽  
Linda Sotnikova ◽  
Olga Krestinina

The protein phosphorylation of the membrane-bound mitochondrial proteins has become of interest from the point of view of its regulatory role of the function of the respiratory chain, opening of the mitochondrial permeability transition pore (mPTP), and initiation of apoptosis. Earlier, we noticed that upon phosphorylation of proteins in some proteins, the degree of their phosphorylation increases with the opening of mPTP. Two isoforms of myelin basic protein and cyclic nucleotide phosphodiesterase were identified in rat brain non-synaptic mitochondria and it was concluded that they are involved in mPTP regulation. In the present study, using the mass spectrometry method, the phosphorylated protein was identified as Calpain 3 in rat brain non-synaptic mitochondria. In the present study, the phosphoprotein Calpain-3 (p94) (CAPN3) was identified in the rat brain mitochondria as a phosphorylated truncated form of p60–62 kDa by two-dimensional electrophoresis and mass spectrometry. We showed that the calpain inhibitor, calpeptin, was able to suppress the Ca2+ efflux from mitochondria, preventing the opening of mPTP. It was found that phosphorylated truncated CALP3 with a molecular weight of 60–62 contains p-Tyr, which indicates the possible involvement of protein tyrosine phosphatase in this process.


2021 ◽  
Vol 22 (14) ◽  
pp. 7367
Author(s):  
Anabel Rico ◽  
Garazi Guembelzu ◽  
Valle Palomo ◽  
Ana Martínez ◽  
Ana Aiastui ◽  
...  

Limb-girdle muscular dystrophy R1 calpain 3-related (LGMDR1) is an autosomal recessive muscular dystrophy produced by mutations in the CAPN3 gene. It is a rare disease and there is no cure or treatment for the disease while the pathophysiological mechanism by which the absence of calpain 3 provokes the dystrophy in muscles is not clear. However, key proteins implicated in Wnt and mTOR signaling pathways, which regulate muscle homeostasis, showed a considerable reduction in their expression and in their phosphorylation in LGMDR1 patients’ muscles. Finally, the administration of tideglusib and VP0.7, ATP non-competitive inhibitors of glycogen synthase kinase 3β (GSK-3β), restore the expression and phosphorylation of these proteins in LGMDR1 cells, opening the possibility of their use as therapeutic options.


2021 ◽  
Vol 8 (1) ◽  
pp. 125-136
Author(s):  
Pankaj Pathak ◽  
Mehar Chand Sharma ◽  
Pankaj Jha ◽  
Chitra Sarkar ◽  
Mohammed Faruq ◽  
...  

Background: Limb girdle muscular dystrophy recessive type 1 (LGMDR1, Previously LGMD2A) is characterized by inactivating mutations in CAPN3. Despite the significant burden of muscular dystrophy in India, and particularly of LGMDR1, its genetic characterization and possible phenotypic manifestations are yet unidentified. Material and Methods: We performed bidirectional CAPN3 sequencing in 95 LGMDR1 patient samples characterized by calpain-3 protein analysis, and these findings were correlated with clinical, biochemical and histopathological features. Results: We identified 84 (88.4%) cases of LGMDR1 harboring 103 CAPN3 mutations (71 novel and 32 known). At least two mutant alleles were identified in 79 (94.2%) of patients. Notably, 76% exonic variations were enriched in nine CAPN3 exons and overall, 41 variations (40%) correspond to only eight exonic and intronic mutations. Patients with two nonsense/out of frame/splice-site mutations showed significant loss of calpain-3 protein as compared to those with two missense/inframe mutations (P = 0.04). We observed a slow progression of disease and less severity in our patients compared to European population. Rarely, presenting clinical features were atypical, and mimicked other muscle diseases like FSHMD, distal myopathy and metabolic myopathies. Conclusion: This is first systematic study to characterize the genetic framework of LGMDR1 in the Indian population. Preliminary calpain-3 immunoblot screening serves well to direct genetic testing. Our findings prioritized nine CAPN3 exons for LGMDR1 diagnosis in our population; therefore, a targeted-sequencing panel of nine exons could serve well for genetic diagnosis, carrier testing, counseling and clinical trial feasibility study in LGMDR1 patients in India.


2020 ◽  
Vol 67 ◽  
pp. 101436
Author(s):  
Ivone de Andrade Rosa ◽  
Stephany Corrêa ◽  
Manoel Luis Costa ◽  
Claudia Mermelstein

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vanessa E. Jahnke ◽  
Jennifer M. Peterson ◽  
Jack H. Van Der Meulen ◽  
Jessica Boehler ◽  
Kitipong Uaesoontrachoon ◽  
...  

Abstract Background Nonsense or loss-of-function mutations in the non-lysosomal cysteine protease calpain-3 result in limb-girdle muscular dystrophy type 2A (LGMD2A). While calpain-3 is implicated in muscle cell differentiation, sarcomere formation, and muscle cytoskeletal remodeling, the physiological basis for LGMD2A has remained elusive. Methods Cell growth, gene expression profiling, and mitochondrial content and function were analyzed using muscle and muscle cell cultures established from healthy and calpain-3-deficient mice. Calpain-3-deficient mice were also treated with PPAR-delta agonist (GW501516) to assess mitochondrial function and membrane repair. The unpaired t test was used to assess the significance of the differences observed between the two groups or treatments. ANOVAs were used to assess significance over time. Results We find that calpain-3 deficiency causes mitochondrial dysfunction in the muscles and myoblasts. Calpain-3-deficient myoblasts showed increased proliferation, and their gene expression profile showed aberrant mitochondrial biogenesis. Myotube gene expression analysis further revealed altered lipid metabolism in calpain-3-deficient muscle. Mitochondrial defects were validated in vitro and in vivo. We used GW501516 to improve mitochondrial biogenesis in vivo in 7-month-old calpain-3-deficient mice. This treatment improved satellite cell activity as indicated by increased MyoD and Pax7 mRNA expression. It also decreased muscle fatigability and reduced serum creatine kinase levels. The decreased mitochondrial function also impaired sarcolemmal repair in the calpain-3-deficient skeletal muscle. Improving mitochondrial activity by acute pyruvate treatment improved sarcolemmal repair. Conclusion Our results provide evidence that calpain-3 deficiency in the skeletal muscle is associated with poor mitochondrial biogenesis and function resulting in poor sarcolemmal repair. Addressing this deficit by drugs that improve mitochondrial activity offers new therapeutic avenues for LGMD2A.


Biology Open ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. bio048975
Author(s):  
Koichi Ojima ◽  
Shoji Hata ◽  
Fumiko Shinkai-Ouchi ◽  
Mika Oe ◽  
Susumu Muroya ◽  
...  

ABSTRACTCalpain-3 (CAPN3) is a muscle-specific type of calpain whose protease activity is triggered by Ca2+. Here, we developed CAPN3 sensor probes (SPs) to detect activated-CAPN3 using a fluorescence/Förster resonance energy transfer (FRET) technique. In our SPs, partial amino acid sequence of calpastatin, endogenous CAPN inhibitor but CAPN3 substrate, is inserted between two different fluorescence proteins that cause FRET. Biochemical and spectral studies revealed that CAPN3 cleaved SPs and changed emission wavelengths of SPs. Importantly, SPs were scarcely cleaved by CAPN1 and CAPN2. Furthermore, our SP successfully captured the activation of endogenous CAPN3 in living myotubes treated with ouabain. Our SPs would become a promising tool to detect the dynamics of CAPN3 protease activity in living cells.


2020 ◽  
Author(s):  
John Vissing ◽  
Julia R. Dahlqvist ◽  
Carinne Roudaut ◽  
Jerome Poupiot ◽  
Isabelle Richard ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Leire Casas-Fraile ◽  
Frederique M. Cornelis ◽  
Domiziana Costamagna ◽  
Anabel Rico ◽  
Robin Duelen ◽  
...  

2020 ◽  
Vol 98 ◽  
pp. 19-24
Author(s):  
Seong Don Hwang ◽  
Kwang-Min Choi ◽  
Jee Youn Hwang ◽  
Mun-Gyeong Kwon ◽  
Ji-Min Jeong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document