Effects of WNT10A on Proliferation and Differentiation of Human Dental Pulp Cells

2014 ◽  
Vol 40 (10) ◽  
pp. 1593-1599 ◽  
Author(s):  
Zhichun Zhang ◽  
Qingru Guo ◽  
Hua Tian ◽  
Ping Lv ◽  
Chunyan Zhou ◽  
...  
2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Shihui Jiang ◽  
Zhaoxia Yu ◽  
Lanrui Zhang ◽  
Guanhua Wang ◽  
Xiaohua Dai ◽  
...  

Abstract This study aimed at evaluate the effects of different aperture-sized type I collagen/silk fibroin (CSF) scaffolds on the proliferation and differentiation of human dental pulp cells (HDPCs). The CSF scaffolds were designed with 3D mapping software Solidworks. Three different aperture-sized scaffolds (CSF1–CSF3) were prepared by low-temperature deposition 3D printing technology. The morphology was observed by scanning electron microscope (SEM) and optical coherence tomography. The porosity, hydrophilicity and mechanical capacity of the scaffold were detected, respectively. HDPCs (third passage, 1 × 105 cells) were seeded into each scaffold and investigated by SEM, CCK-8, alkaline phosphatase (ALP) activity and HE staining. The CSF scaffolds had porous structures with macropores and micropores. The macropore size of CSF1 to CSF3 was 421 ± 27 μm, 579 ± 36 μm and 707 ± 43 μm, respectively. The porosity was 69.8 ± 2.2%, 80.1 ± 2.8% and 86.5 ± 3.3%, respectively. All these scaffolds enhanced the adhesion and proliferation of HDPCs. The ALP activity in the CSF1 group was higher than that in the CSF3 groups (P < 0.01). HE staining showed HDPCs grew in multilayer within the scaffolds. CSF scaffolds significantly improved the adhesion and ALP activity of HDPCs. CSF scaffolds were promising candidates in dentine-pulp complex regeneration.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e83545 ◽  
Author(s):  
Emilio Satoshi Hara ◽  
Mitsuaki Ono ◽  
Takanori Eguchi ◽  
Satoshi Kubota ◽  
Hai Thanh Pham ◽  
...  

2017 ◽  
Vol 83 ◽  
pp. 33-39 ◽  
Author(s):  
Qin Liu ◽  
Wenguo Fan ◽  
Yifan He ◽  
Fuping Zhang ◽  
Xiaoyan Guan ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2449
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Olha Mazur ◽  
Marta Michalska-Sionkowska ◽  
Krzysztof Łukowicz ◽  
Anna Maria Osyczka

In this study, hydrogels based on chitosan cross-linked by glyoxal have been investigated for potential medical applications. Hydrogels were loaded with tannic acid at different concentrations. The thermal stability and the polyphenol-releasing rate were determined. For a preliminary assessment of the clinical usefulness of the hydrogels, they were examined for blood compatibility and in the culture of human dental pulp cells (hDPC). The results showed that after immersion in a polyphenol solution, chitosan/glyoxal hydrogels remain nonhemolytic for erythrocytes, and we also did not observe the cytotoxic effect of hydrogels immersed in tannic acid (TA) solutions with different concentration. Tannic acid was successfully released from hydrogels, and its addition improved material thermal stability. Thus, the current findings open the possibility to consider such hydrogels in clinics.


Sign in / Sign up

Export Citation Format

Share Document