A PARADIGM SHIFT FOR TORSIONAL STIFFNESS OF NICKEL-TITANIUM ROTARY INSTRUMENTS: A FINITE ELEMENT ANALYSIS.

Author(s):  
Zanza Alessio ◽  
Seracchiani Marco ◽  
Di Nardo Dario ◽  
Reda Rodolfo ◽  
Gambarini Gianluca ◽  
...  
2017 ◽  
Vol 12 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Jung-Hong Ha ◽  
Sang Won Kwak ◽  
Antheunis Versluis ◽  
Chan-Joo Lee ◽  
Se-Hee Park ◽  
...  

2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Amira Galal Ismail ◽  
Mohamed Hussein Abdelfattah Zaazou ◽  
Manar Galal ◽  
Nada Omar Mostafa Kamel ◽  
Mohamed Abdulla Nassar

Abstract Background The objective of this study was to assess the bending and torsional properties of two nickel-titanium endodontic files with equivalent sizes and various designs and alloys using finite element analysis, ProTaper Next®X2 (PTN) size 25 with 0.06 taper and WaveOne Gold® (WOG) primary size 25 with 0.07 taper. Methodology Two-dimensional models of the two files PTN and WOG were created using computer tomography scanning and stereomicroscope to produce a three-dimensional digital model. Instrument behavior under bending or torsional conditions was numerically analyzed in SolidWorks software package. Result ProTaper Next® revealed higher flexibility than WaveOne Gold® when exposed to cantilever bending but showed higher stress accumulation than WOG. In terms of torsional resistance, PTN also revealed higher torsional resistance than WOG. Conclusion The geometry of the instrument, thermomechanical treatment of the alloy, and its composition affect the mechanical behavior (bending and torsion) of nickel titanium rotary files. Hence, being aware of these behavioral differences, each clinician will be able to use the adequate file according to the clinical situation in addition to the manufacturer’s instructions.


2013 ◽  
Vol 39 (11) ◽  
pp. 1444-1447 ◽  
Author(s):  
Leandro de Arruda Santos ◽  
Maria Guiomar de Azevedo Bahia ◽  
Estevam Barbosa de Las Casas ◽  
Vicente Tadeu Lopes Buono

2021 ◽  
Vol 41 ◽  
pp. 05005
Author(s):  
Wignyo Hadriyanto ◽  
Lukita Wardani ◽  
Christina Nugrohowati ◽  
Ananto Alhasyimi ◽  
Rachmat Sriwijaya ◽  
...  

The effectiveness of endodontic file preparation depends, among others, on the material, geometric shape, and the drive system. This study aimed to analyze the effect of cross-sectional, pitch, and rotational speed on cyclic fatigue and deflection of NiTi files using finite element analyses. A total of 18 NiTi endodontic rotary instruments ProTaper Gold F2 #25.08 and Hyflex CM #25.04 (n=9) modeling were designed using Autodesk software. Subjects were divided into two groups, the design group of square and convex triangles. Static simulation was then carried out to each group with force on the instrument’s tip by 1N, 2N, and 3N. The file’s cycling fatigue was analyzed at rotating speeds of 200 rpm, 300 rpm, and 400. The data were analyzed by using the three-way Analysis of variance (ANOVA) test followed by LSD (p< 0.05). The results showed the cross-sectional shape and force effect on the deflection value and cyclic fatigue received by the endodontic files (p< 0.05). The convex triangle design presented the lowest cyclic fatigue than square. The convex triangular cross-section design showed a higher deflection value than the square cross-section design.


2020 ◽  
Vol 10 (8) ◽  
pp. 2981
Author(s):  
Giorgia Carpegna ◽  
Mario Alovisi ◽  
Davide Salvatore Paolino ◽  
Andrea Marchetti ◽  
Umberto Gibello ◽  
...  

The aim of this study was to evaluate the contact pressure distribution of two different nickel-titanium (NiTi) endodontic rotary instruments against the root canal walls and to virtually predict their centering ability during shaping with finite element analysis (FEA). Resin blocks simulating root canals were used. One was shaped with ProGlider and ProTaper Next (PTN) X1-X2 and one with ScoutRace and BioRace (BR) 1, 2 and 3. Both resin blocks were virtually replicated with computer-aided design (CAD) software. The endodontic instruments ProTaper Next (PTN) X2 and BioRace BR3 were also replicated with CAD. The NiTi instruments and the shaped blocks geometries were discretized and exported for FEA. The instrument rotation in the root canals was simulated. The finite element simulation was performed by applying an insertion and extraction force of 2.5 N with a constant rotational speed (300 rpm). To highlight possible differences between pressure distributions against the root canal portions outside and inside the canal curvature, the parameter Var was originally defined. Var values were systematically lower for PTN X2, revealing a better centering ability. FEA proved effective for the virtual prediction of the centering ability of NiTi instruments during an early design phase without the use of prototypes.


2007 ◽  
Vol 10 (4) ◽  
pp. 112 ◽  
Author(s):  
Vinoo Subramaniam ◽  
R Indira ◽  
MR Srinivasan ◽  
P Shankar

Sign in / Sign up

Export Citation Format

Share Document