Quantification and discovery of quality control chemical markers for Ba-Bao-Dan by UPLC–MS/MS combined with chemometrics

Author(s):  
Zaixing Cheng ◽  
Shi Zhuo ◽  
Shuang Guo ◽  
Jian Liu ◽  
Xiaoqin Zhang ◽  
...  
2010 ◽  
Vol 5 (4) ◽  
pp. 1934578X1000500
Author(s):  
José G. Sena Filho ◽  
Haroudo S. Xavier ◽  
José M. Barbosa Filho ◽  
Jennifer M. Duringer

Essential oil extracts from the leaves of two Lantana species ( L. radula Sw. and L. canescens Kunth), for which no prior analysis has been reported, were analyzed by GC-MS. This information was utilized to propose chemical markers for Lantana species so that identification between physically similar plant species can be achieved through chemical analysis. Results showed 33 constituents for L. canescens, among which β-caryophyllene (43.9%), β-cubebene (10.1%), elixene (8.6%), β-phellandrene (6.1%), α-caryophyllene (2.6%) and dehydro-aromadendrene (2.6%) were the principle components. L. radula revealed the presence of 21 compounds, the most abundant of which were β-cubebene (31.0%), β-caryophyllene (20.8%), elixene (10.0%), α-salinene (6.4%), β-phellandrene (6.1%), copaene (4.9%) cadinene (1.4%) and psi-limonene (1.4%). The high concentration of β-caryophyllene in the samples tested here and those in the literature make it a good candidate for a chemical marker for Lantana species, with β-cubebene, elixene and β-phellandrene following as minor compounds identified more sporadically in this genus. On the other hand, Lippia species, which are morphologically similar to those from the Lantana genus, would contain limonene, citral, carvacrol, β-myrcene, camphor and thymol as the main chemical markers. These chemical markers would be a powerful tool for maintaining quality control in the extraction of essential oils for use in medicinal applications, as well as in identification of plant specimens to a taxonomist.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Ping Zhan ◽  
Honglei Tian ◽  
Baoguo Sun ◽  
Yuyu Zhang ◽  
Haitao Chen

A method for chromatographic fingerprinting of flavor was established for the quality control of mutton. Twenty-five mutton samples that were chosen from twelve batches were investigated by gas chromatography-mass spectroscopy (GC-MS) and gas chromatography-olfactometry (GC-O). Spectral correlative chromatograms combined with GC-O assessment were employed, and 32 common odor-active compounds that characterize mutton flavor fingerprint were obtained. Based on the flavor chromatographic fingerprint data, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were designed and employed as chromatographic fingerprint methods. Defined categories were perfectly discriminated after PLS-DA was conducted on the fused matrix, demonstrating a 100% accurate classification. Fourteen constituents were further screened with PLS-DA to be the main chemical markers, and they were used to develop similar approaches for the determination of mutton quality and traceability. The flavor fingerprint of mutton established using SPME-GC-MS/O coupled with PLS-DA is appropriate for differentiating and identifying samples, and the procedure would be used in quality control.


2018 ◽  
Vol 159 ◽  
pp. 305-310 ◽  
Author(s):  
Ya-Yun Xu ◽  
Fang Long ◽  
Ye-Qing Zhang ◽  
Jin-Di Xu ◽  
Ming Kong ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Emmanuel Kofi Kumatia ◽  
Francis Ofosu-Koranteng ◽  
Alfred Ampomah Appiah ◽  
Kofi Bobi Barimah

Mist Nibima is an essential herbal medicine used to treat malaria, bacterial, yeast, and COVID-19 infections. However, the drug has not been standardized and its active chemical ingredients are also not known. This study employed physicochemical, organoleptic, qualitative, and quantitate phytochemical analysis to established standards for Mist Nibima. Additionally, UHPLC was used to quantify the alkaloid cryptolepine in the drug using calibration curve. The chemical ingredients in Mist Nibima were thereafter characterized using UHPLC-MS. Organoleptic evaluation shows that Mist Nibima is a very bitter, cloudy, broom yellow decoction with the following physicochemical parameters: pH = 6.10 ± 0.08 (at 28.3°C), total solid residue = 5.34 ± 0.27%w/v, and specific gravity = 1.0099 ± 0.0000. The total alkaloid (23.71 ± 1.311%) content of the drug is 3 times its total saponins (7.993 ± 0.067%) content. Methyl cryptolepinoate (37.10%), cryptolepine (33.56%), quindoline (20.78%), 11-isopropylcryptolepine (5.16%), and hydroxycryptolepine (3.14%) were the active chemical ingredients in the drug with the concentrations of 18.64 ± 0.255, 16.85 ± 0.231, 10.42 ± 0.143, 2.56 ± 0.034, and 1.70 ± 0.023 µg/mL, respectively. Administration of a single oral therapeutic dose (30 mL) of Mist Nibima corresponds to ingestion of 559.2 ± 7.662, 505.5 ± 6.930, 312.6 ± 4.285, 76.8 ± 1.028, and 51.0 ± 0.699 µg of methyl cryptolepinoate, cryptolepine, quindoline, 11-isopropylcryptolepine, and hydroxycryptolepine, respectively. This translates into a corresponding daily dose of 1677.6 ± 22.986, 1516.5 ± 20.790, 937.8 ± 12.855, 230.4 ± 3.084, and 153.0 ± 2.097 µg of methyl cryptolepinoate, cryptolepine, quindoline, 11-isopropylcryptolepine, and hydroxycryptolepine. These results could now serve as tools for authentication, standardization, and quality control of Mist Nibima to ensure its chemical and pharmacological consistency and safety.


2008 ◽  
Vol 3 (1) ◽  
pp. 7 ◽  
Author(s):  
Songlin Li ◽  
Quanbin Han ◽  
Chunfeng Qiao ◽  
Jingzheng Song ◽  
Chuen Lung Cheng ◽  
...  

Author(s):  
Steven Yeung ◽  
Quanlan Chen ◽  
Yongbang Yu ◽  
Bingsen Zhou ◽  
Wei Wu ◽  
...  

AbstractGanoderma lucidum (GL), also known as Reishi or Lingzhi, is a medicinal mushroom widely used in traditional and folk medicines. The extracts made from the fruiting body and spore of naturally grown GL are the most frequently used in commercial products. More than 400 compounds have been identified in GL with the triterpenoids considered to be the major active components. Large variations in the chemical components were reported in previous studies and there is no comprehensive study of the content of multiple major triterpenoids in the GL product. In addition, there is no report in the comparison of chemical profiles in different parts of GL (i.e., fruiting body and spore). Determining the chemical composition and comparing the differences between fruiting body and spore are essential for the identity, efficacy and safety of various GL products.In this study, 13 compounds (ganoderenic Acid C, ganoderic Acid C2, ganoderic Acid G, ganoderic Acid B, ganoderenic Acid B, ganoderic Acid A, ganoderic Acid H, ganoderenic Acid D, ganoderic Acid D, ganoderic Acid F, ganoderic Acid DM, ganoderol A, and ergosterol) were selected as the chemical markers. The purpose of this study is to develop an HPLC-DAD fingerprint method for quantification of these active components in GL (spore and fruiting body) and test the feasibility of using the HPLC-DAD fingerprint for quality control or identity determination of GL products.The results showed that this method could determine the levels of the major components accurately and precisely. Among the 13 components, 11 ganoderma acids were identified to be proper chemical markers for quality control of GL products, while ganoderal A was in a very low amount and ergosterol was not a specific marker in GL. The extracts of fruiting body contained more chemical compounds than those of spore, indicating that these 11 compounds could be a better chemical marker for the fruiting body than the spore. The HPLC chemical fingerprint analysis showed higher variability in the quality of GL harvest in different years, while lesser variation in batches harvested in the same year.In conclusion, an HPLC assay detecting 11 major active components and a fingerprinting method was successfully established and validated to be feasible for quality control of most commercial GL products.


2019 ◽  
Vol 57 (9) ◽  
pp. 821-827 ◽  
Author(s):  
Sagar Katakam ◽  
Rajeshwari Rathod ◽  
Poojadevi Sharma ◽  
Dharmesh Kachhadiya ◽  
Sheetal Anandjiwala ◽  
...  

Abstract Globally, Tephrosia purpurea (L.) Pers is used as an important component in herbal drug formulations for liver health. The present study is aimed to develop a suitable analytical approach for simultaneous analysis of three flavonoids (rutin, deguelin and rotenone) to establish quality control methods for plant. A novel High-performance liquid chromatography photodiode array detector (HPLC-PDA) method has been developed to quantify these flavonoids in T. purpurea. The method was validated, and data were subjected to chemometric analysis to select most optimal marker compound. The method that was found linear with R2 values ranges from 0.996 to 0.998 with good recoveries. Intra- and inter-day precision values were <2. HPLC analysis revealed high level of chemodiversity. Quantity of all the three chemical markers was found significantly disparate in samples from different locations. Deguelin was detectable only in three out of total eight samples. However, liquid chromatography–mass spectrometry analysis was found sufficiently sensitive to detect all the compounds in all samples. Thus, results suggest to apply combination of approaches to enhance confidence in chromatographic methods for quality control of herbal drugs. Principal component analysis ranked the markers as Rutin>Rotenone>Deguelin. This comprehensive approach employing multichromatography platforms can be successfully utilized in analysis of these bioactive markers and routine standardization of herbal material and formulations containing T. purpurea.


Sign in / Sign up

Export Citation Format

Share Document