Molecularly imprinted polymers for arbutin and rutin by modified precipitation polymerization and their application for selective extraction of rutin in nutritional supplements

Author(s):  
Shizuka Masumoto ◽  
Yukari Nakamura ◽  
Jun Haginaka
2019 ◽  
Vol 13 (1) ◽  
pp. 122-133 ◽  
Author(s):  
Showkat Ahmad Bhawani ◽  
Salma Bakhtiar ◽  
Syed Rizwan Shafqat

Background: 2,4,6-Trichlorophenol (2,4,6-TCP) is one of the most significant pollutants among chlorophenols due to its harmful effects. It has been classified as priority pollutants by the U.S. Environmental Protection Agency. Therefore, highly selective separation and sensitive recognition of 2,4,6-TCP from complex samples are in great demand. Methods: For this purpose , the preparation of MIPs selective for 2,4,6-TCP was carried out by precipitation polymerization. A non-covalent approach was employed to establish an interaction between template and monomer (methacrylic acid). Results: The resulted polymers were characterized by scanning electron microscopy (SEM), EDX, Fourier-transform infrared spectroscopy(FT-IR) and BET. The batch binding assay was carried out to select the most selective polymer in terms of binding efficiency towards the target template. The adsorption parameters such as initial concentration, dosage of polymer, pH effect and selectivity with structural analogues were determined . The selectivity of MIP towards the 2, 4, 6-TCP was higher as compared to its structural analogue melamine with a good adsorption efficiency. Furthermore, the MIP as an extracting material was applied for extraction of 2, 4, 6-trichlorophenol from the spiked blood serum (88%) and river water sample (94%). The results showed that the optimized MIP could successfully extract 2,4,6-TCP from the blood serum and river water. Conclusion: The molecularly imprinted polymers for 2,4,6-TCP have been prepared by precipitation polymerization with a non-covalent approach. The optimized MIP has been successfully used for the extraction of 2,4,6-TCP from blood serum and river water.


2014 ◽  
Vol 6 (16) ◽  
pp. 6397-6406 ◽  
Author(s):  
Xiaoyan Li ◽  
Mei Li ◽  
Junjie Li ◽  
Fuhou Lei ◽  
Xiaomeng Su ◽  
...  

A novel sample clean-up technique, i.e., molecularly imprinted solid-phase extraction (MISPE) combined with HPLC, was developed and validated for the selective extraction and determination of basic orange II in foods.


2006 ◽  
Vol 1134 (1-2) ◽  
pp. 88-94 ◽  
Author(s):  
Haruyo Sambe ◽  
Kaori Hoshina ◽  
Ruin Moaddel ◽  
Irving W. Wainer ◽  
Jun Haginaka

Sign in / Sign up

Export Citation Format

Share Document