sio2 layer
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 27)

H-INDEX

20
(FIVE YEARS 3)

Nano Express ◽  
2021 ◽  
Author(s):  
Cedric Djaou ◽  
Christina villeneuve-faure ◽  
Kremena Makasheva ◽  
Laurent Boudou ◽  
Gilbert Teyssedre

Abstract Dielectric nanocomposite materials are now involved in a large panel of electrical engineering applications ranging from micro-/nano-electronics to power devices. The performances of all these systems are critically dependent on the evolution of the electrical properties of the dielectric parts, especially under temperature increase. In this study we investigate the impact of a single plane of silver nanoparticles (AgNPs), embedded in a thin silica (SiO2) layer close to the surface, on the electric field distribution, the charge injection and the charge dynamic processes for different AgNPs-based nanocomposites and various temperatures in the range 25°C – 110°C. The electrical charges are injected locally by using an Atomic Force Microscopy (AFM) tip and the related surface potential profile is probed by Kelvin Probe Force Microscopy (KPFM). To get deeper in the understanding of the physical phenomena, the electric field distribution in the AgNPs-based nanocomposites is computed by using a Finite Element Modeling (FEM). The results show a strong electrostatic coupling between the AFM tip and the AgNPs, as well as between the AgNPs when the AgNPs-plane is embedded in the vicinity of the SiO2-layer surface. At low temperature (25°C) the presence of an AgNPs-plane close to the surface, i.e., at a distance of 7 nm, limits the amount of injected charges. Besides, the AgNPs retain the injected charges and prevent from charge lateral spreading after injection. At 110°C the amount of injected charge is increased in the nanocomposites compared to low temperatures. Moreover, the speed of lateral charge spreading is increased for the AgNPs-based nanocomposites. These findings imply that the lateral charge transport is favored in the nanocomposite structures by the closely situated AgNPs because of the strong electrostatic coupling between them.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2864
Author(s):  
Dimitrios-Panagiotis Argyropoulos ◽  
George Zardalidis ◽  
Panagiotis Giotakos ◽  
Maria Daletou ◽  
Filippos Farmakis

Silicon nanoparticles are used to enhance the anode specific capacity for the lithium-ion cell technology. Due to the mechanical deficiencies of silicon during lithiation and delithiation, one of the many strategies that have been proposed consists of enwrapping the silicon nanoparticles with graphene and creating a void area between them so as to accommodate the large volume changes that occur in the silicon nanoparticle. This work aims to investigate the electrochemical performance and the associated kinetics of the hollow outer shell nanoparticles. To this end, we prepared hollow outer shell silicon nanoparticles (nps) enwrapped with graphene by using thermally grown silicon dioxide as a sacrificial layer, ball milling to enwrap silicon particles with graphene and hydro fluorine (HF) to etch the sacrificial SiO2 layer. In addition, in order to offer a wider vision on the electrochemical behavior of the hollow outer shell Si nps, we also prepared all the possible in-between process stages of nps and corresponding electrodes (i.e., bare Si nps, bare Si nps enwrapped with graphene, Si/SiO2 nps and Si/SiO2 nps enwrapped with graphene). The morphology of all particles revealed the existence of graphene encapsulation, void, and a residual layer of silicon dioxide depending on the process of each nanoparticle. Corresponding electrodes were prepared and studied in half cell configurations by means of galvanostatic cycling, cyclic voltammetry and electrochemical impedance spectroscopy. It was observed that nanoparticles encapsulated with graphene demonstrated high specific capacity but limited cycle life. In contrast, nanoparticles with void and/or SiO2 were able to deliver improved cycle life. It is suggested that the existence of the void and/or residual SiO2 layer limits the formation of rich LiXSi alloys in the core silicon nanoparticle, providing higher mechanical stability during the lithiation and delithiation processes.


2021 ◽  
Author(s):  
Jordi Verdu ◽  
Patricia Silveira ◽  
Eloi Guerrero ◽  
Lluis Acosta ◽  
Pedro De Paco

Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 217
Author(s):  
Vien Thi Tran ◽  
Heongkyu Ju

We demonstrate the enhancement of fluorescence emitted from dye molecules coupled with two surface plasmons, i.e., silver nanoparticles (AgNPs)-induced localized surface plasmons (LSP) and thin silver (Ag) film supported surface plasmons. Excitation light is illuminated to a SiO2 layer that contains both rhodamine 110 molecules and AgNPs. AgNPs enhances excitation rates of dye molecules in their close proximity due to LSP-induced enhancement of local electromagnetic fields at dye excitation wavelengths. Moreover, the SiO2 layer on one surface of which a 50 nm-thick Ag film is coated for metal cladding (air on the other surface), acts as a waveguide core at the dye emission wavelengths. The Ag film induces the surface plasmons which couple with the waveguide modes, resulting in a waveguide-modulated version of surface plasmon coupled emission (SPCE) for different SiO2 thicknesses in a reverse Kretschmann configuration. We find that varying the SiO2 thickness modulates the fluorescent signal of SPCE, its modulation behavior being in agreement with the theoretical simulation of thickness dependent properties of the coupled plasmon waveguide resonance. This enables optimization engineering of the waveguide structure for enhancement of fluorescent signals. The combination of LSP enhanced dye excitation and the waveguide-modulated version of SPCE may offer chances of enhancing fluorescent signals for a highly sensitive fluorescent assay of biomedical and chemical substances.


2021 ◽  
Vol 60 (SB) ◽  
pp. SBBK08
Author(s):  
Tomohisa Mizuno ◽  
Rikito Kanazawa ◽  
Kazuhiro Yamamoto ◽  
Kohki Murakawa ◽  
Kazuma Yoshimizu ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Jongwon Lee ◽  
Kilsun Roh ◽  
Sung-Kyu Lim ◽  
Youngsu Kim

This is the first demonstration of sidewall slope control of InP via holes with an etch depth of more than 10 μm for 3D integration. The process for the InP via holes utilizes a common SiO2 layer as an InP etch mask and conventional inductively coupled plasma (ICP) etcher operated at room temperature and simple gas mixtures of Cl2/Ar for InP dry etch. Sidewall slope of InP via holes is controlled within the range of 80 to 90 degrees by changing the ICP power in the ICP etcher and adopting a dry-etched SiO2 layer with a sidewall slope of 70 degrees. Furthermore, the sidewall slope control of the InP via holes in a wide range of 36 to 69 degrees is possible by changing the RF power in the etcher and introducing a wet-etched SiO2 layer with a small sidewall slope of 2 degrees; this wide slope control is due to the change of InP-to-SiO2 selectivity with RF power.


Photonics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Heeso Noh ◽  
Jai-Min Choi

We numerically demonstrate one-way zero reflection using the transfer matrix method. Using simulations, we adjusted the thickness of SiO2 layers in a simple SiO2-Au-SiO2 layer structure. We found two solutions, 47 nm-10 nm-32 nm and 71 nm-10 nm-60 nm, which are the thicknesses for one-way zero reflection at a wavelength of 560 nm. We confirmed it with reflection spectra, where reflectance is zero for forwardly incident light and 2.5% for backwardly incident light at the wavelength 560 nm, and thickness 47 nm-10 nm-32 nm.


Sign in / Sign up

Export Citation Format

Share Document