scholarly journals A spin-polarized scheme for obtaining quasi-particle energies within the density functional theory

2005 ◽  
Vol 66 (12) ◽  
pp. 2192-2196 ◽  
Author(s):  
B. Barbiellini ◽  
A. Bansil
2012 ◽  
Vol 542-543 ◽  
pp. 1418-1421
Author(s):  
Qing Xiang Gao ◽  
Lin Xu ◽  
Bo Wu

The spin-polarized generalized gradient approximation to the density functional theory is used to determine the geometries, stability, electronic structures, and magnetic properties of the Gd8O12cluster. Our work reveals that the ground state configuration of the Gd8O12cluster is a hexahedral cage structure with Cisymmetry. The electronic and magnetic properties imply that the formations of the ionic bonds between the adjacent Gd and O atoms result in the high stability of the Gd8O12cluster, which is due to the charge transfers between the Gd 5d, 6s electrons to O 2p orbital. It is also confirmed by the electron densities of HOMO-LUMO states. In addition, the analysis of the magnetic properties implies the total magnetic moments are mostly dominated by the Gd 4f orbital.


2014 ◽  
Vol 668-669 ◽  
pp. 8-11
Author(s):  
Chun Mei Liu ◽  
Zhuan Li ◽  
Jun Ling Wang ◽  
Li Li Zhao ◽  
Yang Wang

Based on the non-equilibrium Green’s function in combination with the density-functional theory, The spin-dependent transport in the short graphene nanoribbon (graphene sheet) asymmetrically coupled to the electrodes of Au chains is investigated. It is found that a fully spin-polarized current (close to 100%) can be produced at the output port. The physics underlying attributes to the spatially separated edge states of the sheet caused by asymmetric contacts. Especially, the current's spin polarized direction can be tuned simply by changing the contact locations of the electrodes to the graphene sheet.


Author(s):  
I. Yu. Sklyadneva ◽  
Rolf Heid ◽  
Pedro Miguel Echenique ◽  
Evgueni Chulkov

Electron-phonon interaction in the Si(111)-supported rectangular √(7 ) ×√3 phases of In is investigated within the density-functional theory and linear-response. For both single-layer and double-layer √(7 ) ×√3 structures, it...


2020 ◽  
Vol 18 (1) ◽  
pp. 357-368
Author(s):  
Kaiwen Zheng ◽  
Kai Guo ◽  
Jing Xu ◽  
Wei Liu ◽  
Junlang Chen ◽  
...  

AbstractCatechin – a natural polyphenol substance – has excellent antioxidant properties for the treatment of diseases, especially for cholesterol lowering. Catechin can reduce cholesterol content in micelles by forming insoluble precipitation with cholesterol, thereby reducing the absorption of cholesterol in the intestine. In this study, to better understand the molecular mechanism of catechin and cholesterol, we studied the interaction between typical catechins and cholesterol by the density functional theory. Results show that the adsorption energies between the four catechins and cholesterol are obviously stronger than that of cholesterol themselves, indicating that catechin has an advantage in reducing cholesterol micelle formation. Moreover, it is found that the molecular interactions of the complexes are mainly due to charge transfer of the aromatic rings of the catechins as well as the hydrogen bond interactions. Unlike the intuitive understanding of a complex formed by hydrogen bond interaction, which is positively correlated with the number of hydrogen bonds, the most stable complexes (epicatechin–cholesterol or epigallocatechin–cholesterol) have only one but stronger hydrogen bond, due to charge transfer of the aromatic rings of catechins.


2021 ◽  
Author(s):  
Takashi Kurogi ◽  
Keiichi Irifune ◽  
Takahiro Enoki ◽  
Kazuhiko Takai

Reduction of CCl4 by CrCl2 in THF afforded a trinuclear chromium(III) carbyne [CrCl(thf)2)]3(μ3-CCl)(μ-Cl)3. The chlorocarbyne complex reacted with aldehydes to afford chloroallylic alcohols and terminal alkynes. The density functional theory...


2015 ◽  
Vol 17 (34) ◽  
pp. 22448-22454 ◽  
Author(s):  
K. Zberecki ◽  
R. Swirkowicz ◽  
J. Barnaś

Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach.


Sign in / Sign up

Export Citation Format

Share Document