scholarly journals Hypergraph partitioning for multiple communication cost metrics: Model and methods

2015 ◽  
Vol 77 ◽  
pp. 69-83 ◽  
Author(s):  
Mehmet Deveci ◽  
Kamer Kaya ◽  
Bora Uçar ◽  
Ümit V. Çatalyürek
Author(s):  
Zhikun Chen ◽  
Shuqiang Yang ◽  
Yunfei Shang ◽  
Yong Liu ◽  
Feng Wang ◽  
...  

NoSQL database is famed for the characteristics of high scalability, high availability, and high fault-tolerance. It is used to manage data for a lot of applications. The computing model has been transferred to “computing close to data”. Therefore, the location of fragment directly affects system's performance. Every site's load dynamical changes because of the increasing data and the ever-changing operation pattern. So system has to re-allocate fragment to improve system's performance. The general fragment re-allocation strategies of NoSQL database scatter the related fragments as possible to improve the operations' parallel degree. But those fragments may interact with each other in some application's operations. So the high parallel degree of operation may increase system's communication cost such as data are transferred by network. In this paper, the authors propose a fragment re-allocation strategy based on hypergraph. This strategy uses a weighted hypergraph to represent the fragments' access pattern of operations. A hypergraph partitioning algorithm is used to cluster fragments in the strategy. This strategy can improve system's performance according to reducing the communication cost while guaranteeing the parallel degree of operations. Experimental results confirm that the strategy will effectively contribute in solving fragment re-allocation problem in specific application environment of NoSQL database system, and it can improve system's performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
K. Mahalakshmi ◽  
K. Kousalya ◽  
Himanshu Shekhar ◽  
Aby K. Thomas ◽  
L. Bhagyalakshmi ◽  
...  

Cloud storage provides a potential solution replacing physical disk drives in terms of prominent outsourcing services. A threaten from an untrusted server affects the security and integrity of the data. However, the major problem between the data integrity and cost of communication and computation is directly proportional to each other. It is hence necessary to develop a model that provides the trade-off between the data integrity and cost metrics in cloud environment. In this paper, we develop an integrity verification mechanism that enables the utilisation of cryptographic solution with algebraic signature. The model utilises elliptic curve digital signature algorithm (ECDSA) to verify the data outsources. The study further resists the malicious attacks including forgery attacks, replacing attacks and replay attacks. The symmetric encryption guarantees the privacy of the data. The simulation is conducted to test the efficacy of the algorithm in maintaining the data integrity with reduced cost. The performance of the entire model is tested against the existing methods in terms of their communication cost, computation cost, and overhead cost. The results of simulation show that the proposed method obtains reduced computational of 0.25% and communication cost of 0.21% than other public auditing schemes.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 539 ◽  
Author(s):  
Arun Kumar Sangaiah ◽  
Ali Asghar Rahmani Hosseinabadi ◽  
Morteza Babazadeh Shareh ◽  
Seyed Yaser Bozorgi Rad ◽  
Atekeh Zolfagharian ◽  
...  

The Internet of Things (IoT) is a distributed system that connects everything via internet. IoT infrastructure contains multiple resources and gateways. In such a system, the problem of optimizing IoT resource allocation and scheduling (IRAS) is vital, because resource allocation (RA) and scheduling deals with the mapping between recourses and gateways and is also responsible for optimally allocating resources to available gateways. In the IoT environment, a gateway may face hundreds of resources to connect. Therefore, manual resource allocation and scheduling is not possible. In this paper, the whale optimization algorithm (WOA) is used to solve the RA problem in IoT with the aim of optimal RA and reducing the total communication cost between resources and gateways. The proposed algorithm has been compared to the other existing algorithms. Results indicate the proper performance of the proposed algorithm. Based on various benchmarks, the proposed method, in terms of “total communication cost”, is better than other ones.


2001 ◽  
Vol 02 (03) ◽  
pp. 317-329 ◽  
Author(s):  
MUSTAFA MAT DERIS ◽  
ALI MAMAT ◽  
PUA CHAI SENG ◽  
MOHD YAZID SAMAN

This article addresses the performance of data replication protocol in terms of data availability and communication costs. Specifically, we present a new protocol called Three Dimensional Grid Structure (TDGS) protocol, to manage data replication in distributed system. The protocol provides high availability for read and write operations with limited fault-tolerance at low communication cost. With TDGS protocol, a read operation is limited to two data copies, while a write operation is required with minimal number of copies. In comparison to other protocols. TDGS requires lower communication cost for an operation, while providing higher data availability.


2013 ◽  
Vol 22 (05) ◽  
pp. 1350033
Author(s):  
CHI-CHOU KAO ◽  
YEN-TAI LAI

The Time-Multiplexed FPGA (TMFPGA) architecture can improve dramatically logic utilization by time-sharing logic but it needs a large amount of registers among sub-circuits for partitioning the given sequential circuits. In this paper, we propose an improved TMFPGA architecture to simplify the precedence constraints so that the number of the registers among sub-circuits can be reduced for sequential circuits partitioning. To demonstrate the practicability of the architecture, we also present a greedy algorithm to minimize the maximum number of the registers. Experimental results demonstrate the effectives of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document