Topical application of solubilized Reseda luteola extract reduces ultraviolet B-induced inflammation in vivo

2009 ◽  
Vol 96 (3) ◽  
pp. 260-265 ◽  
Author(s):  
F. Casetti ◽  
W. Jung ◽  
U. Wölfle ◽  
J. Reuter ◽  
K. Neumann ◽  
...  
Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
F Casetti ◽  
W Jung ◽  
U Wölfle ◽  
J Reuter ◽  
K Neumann ◽  
...  

Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 288
Author(s):  
Zhilan Peng ◽  
Beibei Chen ◽  
Qinsheng Zheng ◽  
Guoping Zhu ◽  
Wenhong Cao ◽  
...  

Chronic exposure to ultraviolet B (UVB) irradiation is a major cause for skin photoaging. UVB induces damage to skin mainly by oxidative stress, inflammation, and collagen degradation. This paper investigated the photo-protective effects of peptides from oyster (Crassostrea hongkongensis) protein hydrolysates (OPs) by topical application on the skin of UVB-irradiated mice. Results from mass spectrometry showed that OPs consisted of peptides with a molecular weight range of 302.17–2936.43 Da. In vivo study demonstrated that topical application of OPs on the skin significantly alleviated moisture loss, epidermal hyperplasia, as well as degradation of collagen and elastin fibers caused by chronic UVB irradiation. In this study, OPs treatment promoted antioxidant enzymes (SOD and GPH-Px) activities, while decreased malondialdehyde (MDA) level in the skin. In addition, OPs treatment significantly decreased inflammatory cytokines (IL-1β, IL-6, TNF-α) content, and inhibited inflammation related (iNOS, COX-2) protein expression in the skin. Via inhibiting metalloproteinase 1(MMP1) expression, OPs treatment markedly decreased the degradation of collagen and elastin fibers as well as recovered the altered arrangement of extracellular matrix network in the dermis of skin. Our study demonstrated for the first time that OPs protected against UVB induced skin photodamage by virtue of its antioxidative and anti-inflammatory properties, as well as regulating the abnormal expression of MMP-1. The possible molecular mechanism underlying OPs anti-photoaging is possibly related to downregulating of the MAPK/NF-κB signaling pathway, while promoting TGF-β production in the skin.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 963
Author(s):  
Maria C. Holeva ◽  
Athanasios Sklavounos ◽  
Rajendran Rajeswaran ◽  
Mikhail M. Pooggin ◽  
Andreas E. Voloudakis

Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.


2001 ◽  
Vol 55 (9) ◽  
pp. 1173-1180 ◽  
Author(s):  
C. Laugel ◽  
C. Do Nascimento ◽  
D. Ferrier ◽  
J. P. Marty ◽  
A. Baillet

2019 ◽  
Vol 97 ◽  
pp. 42-51 ◽  
Author(s):  
Xiao-Heng Zhao ◽  
Franklin R. Tay ◽  
Yan-Jun Fang ◽  
Liu-Yan Meng ◽  
Zhuan Bian

2003 ◽  
Vol 16 (2) ◽  
pp. 130-136 ◽  
Author(s):  
G. Colombo ◽  
A. Zucchi ◽  
F. Allegra ◽  
P. Colombo ◽  
F. Zani ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Didier Boucher ◽  
Ruvini Kariawasam ◽  
Joshua Burgess ◽  
Adrian Gimenez ◽  
Tristan E. Ocampo ◽  
...  

AbstractMaintenance of genomic stability is critical to prevent diseases such as cancer. As such, eukaryotic cells have multiple pathways to efficiently detect, signal and repair DNA damage. One common form of exogenous DNA damage comes from ultraviolet B (UVB) radiation. UVB generates cyclobutane pyrimidine dimers (CPD) that must be rapidly detected and repaired to maintain the genetic code. The nucleotide excision repair (NER) pathway is the main repair system for this type of DNA damage. Here, we determined the role of the human Single-Stranded DNA Binding protein 2, hSSB2, in the response to UVB exposure. We demonstrate that hSSB2 levels increase in vitro and in vivo after UVB irradiation and that hSSB2 rapidly binds to chromatin. Depletion of hSSB2 results in significantly decreased Replication Protein A (RPA32) phosphorylation and impaired RPA32 localisation to the site of UV-induced DNA damage. Delayed recruitment of NER protein Xeroderma Pigmentosum group C (XPC) was also observed, leading to increased cellular sensitivity to UVB. Finally, hSSB2 was shown to have affinity for single-strand DNA containing a single CPD and for duplex DNA with a two-base mismatch mimicking a CPD moiety. Altogether our data demonstrate that hSSB2 is involved in the cellular response to UV exposure.


Sign in / Sign up

Export Citation Format

Share Document