Topical application of solubilized Reseda luteola extract inhibits ultraviolet B-induced inflammation in human volunteers in vivo

Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
F Casetti ◽  
W Jung ◽  
U Wölfle ◽  
J Reuter ◽  
K Neumann ◽  
...  
2009 ◽  
Vol 96 (3) ◽  
pp. 260-265 ◽  
Author(s):  
F. Casetti ◽  
W. Jung ◽  
U. Wölfle ◽  
J. Reuter ◽  
K. Neumann ◽  
...  

Author(s):  
Blessing O Anonye ◽  
Valentine Nweke ◽  
Jessica Furner-Pardoe ◽  
Rebecca Gabrilska ◽  
Afshan Rafiq ◽  
...  

AbstractThe rise in antimicrobial resistance has prompted the development of alternatives, such as plant-derived compounds, to combat bacterial infections. Bald’s eyesalve, a remedy used in the Early Medieval period, has previously been shown to have efficacy against Staphylococcus aureus grown in an in vitro model of soft tissue infection. This remedy also had bactericidal activity against methicillin-resistant S. aureus (MRSA) in a chronic mouse wound. However, the safety profile of Bald’s eyesalve has not yet been demonstrated, and this is vital before testing in humans. Here, we determined the safety potential of Bald’s eyesalve using in vitro, ex vivo, and in vivo models representative of skin or eye infections. We also confirmed that Bald’s eyesalve is active against an important eye pathogen, Neisseria gonorrhoeae. Low levels of cytotoxicity were observed in eyesalve-treated cell lines representative of skin and immune cells. Results from a bovine corneal opacity and permeability test demonstrated slight irritation to the cornea that resolved within 10 minutes. The slug mucosal irritation assay revealed that a low level of mucus was secreted by slugs exposed to eyesalve, indicating mild mucosal irritation. We obtained promising results from mouse wound closure experiments; no visible signs of irritation or inflammation were observed. Our results suggest that Bald’s eyesalve could be tested further on human volunteers to assess safety for topical application against bacterial infections.ImportanceAlternative treatment for bacterial infections are needed to combat the ever increasing repertoire of bacteria resistant to antibiotics. A medieval plant-based remedy, Bald’s eyesalve, shows promise as a substitute for the treatment of these infections. For any substance to be effective in the treatment of bacterial infections in humans, it is important to consider the safety profile. This is a key consideration in order to have the necessary regulatory approval. We demonstrate the safety profile of Bald’s eyesalve using a variety of models, including whole-organ and whole-animal models. Our results show that Bald’s eyesalve is mildly toxic to cultured human cells, but potentially suitable for patch tests on healthy human volunteers to assess safety for later clinical trials. Our work has the potential to transform the management of diseases caused by bacterial infections, such as diabetic foot ulcers, through topical application of a natural product cocktail based on Bald’s eyesalve.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 288
Author(s):  
Zhilan Peng ◽  
Beibei Chen ◽  
Qinsheng Zheng ◽  
Guoping Zhu ◽  
Wenhong Cao ◽  
...  

Chronic exposure to ultraviolet B (UVB) irradiation is a major cause for skin photoaging. UVB induces damage to skin mainly by oxidative stress, inflammation, and collagen degradation. This paper investigated the photo-protective effects of peptides from oyster (Crassostrea hongkongensis) protein hydrolysates (OPs) by topical application on the skin of UVB-irradiated mice. Results from mass spectrometry showed that OPs consisted of peptides with a molecular weight range of 302.17–2936.43 Da. In vivo study demonstrated that topical application of OPs on the skin significantly alleviated moisture loss, epidermal hyperplasia, as well as degradation of collagen and elastin fibers caused by chronic UVB irradiation. In this study, OPs treatment promoted antioxidant enzymes (SOD and GPH-Px) activities, while decreased malondialdehyde (MDA) level in the skin. In addition, OPs treatment significantly decreased inflammatory cytokines (IL-1β, IL-6, TNF-α) content, and inhibited inflammation related (iNOS, COX-2) protein expression in the skin. Via inhibiting metalloproteinase 1(MMP1) expression, OPs treatment markedly decreased the degradation of collagen and elastin fibers as well as recovered the altered arrangement of extracellular matrix network in the dermis of skin. Our study demonstrated for the first time that OPs protected against UVB induced skin photodamage by virtue of its antioxidative and anti-inflammatory properties, as well as regulating the abnormal expression of MMP-1. The possible molecular mechanism underlying OPs anti-photoaging is possibly related to downregulating of the MAPK/NF-κB signaling pathway, while promoting TGF-β production in the skin.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 963
Author(s):  
Maria C. Holeva ◽  
Athanasios Sklavounos ◽  
Rajendran Rajeswaran ◽  
Mikhail M. Pooggin ◽  
Andreas E. Voloudakis

Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.


Author(s):  
Xiu‐Shi Zhang ◽  
En‐Hui Liu ◽  
Xin‐Yu Wang ◽  
Xin‐Xiang Zhou ◽  
Hong‐Xia Zhang ◽  
...  

2003 ◽  
Vol 19 (5) ◽  
pp. 355-362 ◽  
Author(s):  
Y.S.R Krishnaiah ◽  
V Satyanarayana ◽  
B Dinesh Kumar ◽  
R.S Karthikeyan ◽  
P Bhaskar

2001 ◽  
Vol 55 (9) ◽  
pp. 1173-1180 ◽  
Author(s):  
C. Laugel ◽  
C. Do Nascimento ◽  
D. Ferrier ◽  
J. P. Marty ◽  
A. Baillet

2001 ◽  
Vol 69 (3) ◽  
pp. 1483-1487 ◽  
Author(s):  
Robert E. Throm ◽  
Stanley M. Spinola

ABSTRACT Haemophilus ducreyi expresses several putative virulence factors in vitro. Isogenic mutant-to-parent comparisons have been performed in a human model of experimental infection to examine whether specific gene products are involved in pathogenesis. Several mutants (momp, ftpA, losB, lst, cdtC, and hhdB) were as virulent as the parent in the human model, suggesting that their gene products did not play a major role in pustule formation. However, we could not exclude the possibility that the gene of interest was not expressed during the initial stages of infection. Biopsies of pustules obtained from volunteers infected with H. ducreyiwere subjected to reverse transcription-PCR. Transcripts corresponding to momp, ftpA, losB, lst, cdtB, and hhdA were expressed in vivo. In addition, transcripts for other putative virulence determinants such as ompA2, tdhA, lspA1, andlspA2 were detected in the biopsies. These results indicate that although several candidate virulence determinants are expressed during experimental infection, they do not have a major role in the initial stages of pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document