UV radiation-induced biosynthesis, stability and antioxidant activity of mycosporine-like amino acids (MAAs) in a unicellular cyanobacterium Gloeocapsa sp. CU2556

Author(s):  
Rajesh P. Rastogi ◽  
Aran Incharoensakdi
2019 ◽  
Author(s):  
Clara M. Agapie ◽  
Melissa Sampson ◽  
William Gee

The work describes a new chemical means of visualising latent fingerprints (fingermarks) using tropolone. Tropolone reacts with amino acids within the fingermark residue to form adducts that absorb UV radiation. These adducts provide useful contrast on highly-fluorescent prous surfaces will illuminated with UV radiation. The conjugated seven-membered ring of the tropolone adduct can be reacted further diazonium salts, which is demonstrated here with formation of two dyes. The methodology is extremely rapid, occurring in minutes with mild heating, and can be applied before ninhydrin in a chemical detection sequence. <br>


2020 ◽  
Vol 16 (4) ◽  
pp. 407-414
Author(s):  
Fatemeh Heidari ◽  
Zeinab Shariatmadari ◽  
Hossein Riahi

Background: Microalgae are the source of various compounds with high potentials for being used in different industries. The production of such compounds can be raised under extreme conditions. In the present study, four cyanobacteria and one coccoid green alga were examined which were isolated from hot springs in high background radiation areas in Ramsar, a city in the north of Iran. Methods: Cadmium adsorption from aqueous solution, response towards cadmium stress, antioxidant activity, total phenolic compound and drought tolerance were investigated in these microalgae. Results: The results showed that these extremophile microalgae contain valuable biological compounds which can be useful in remediation of heavy metals from contaminated water and soils and pharmaceutical applications. The unicellular cyanobacterium, Chroococidiopsis thermalis IBRC-M50002, was the best strain with the highest biological activity in various testes such as cadmium adsorption (225 mg g-1), cadmium tolerance stress (100 mg ml-1), antioxidant activity (IC50= 18 μg mg-1) and total phenol content (100 μg ml-1). The coccoid green algae Grasiella emersonii IBRC-M50001, also exhibited significant antioxidant activity (IC50=10 μg mg-1) and total phenol compound (116 μg ml-1), but its cadmium adsorption, tolerance at cadmium stress and desiccation were lower than Chroococidiopsis thermalis. Conclusion: HBRAs microalgae, isolated from extreme conditions, are useful microorganisms for the production of bioactive substances and natural antioxidants. In other words, they exhibited high capacity to be used in pharmaceutical, industrial and commercial applications.


2012 ◽  
Vol 81 (12) ◽  
pp. 1896-1903 ◽  
Author(s):  
А.А. Sladkova ◽  
А.А. Sosnovskaya ◽  
I.P. Edimecheva ◽  
О.I. Shadyro

2016 ◽  
Vol 82 (19) ◽  
pp. 5951-5959 ◽  
Author(s):  
Paul M. D'Agostino ◽  
Vivek S. Javalkote ◽  
Rabia Mazmouz ◽  
Russell Pickford ◽  
Pravin R. Puranik ◽  
...  

ABSTRACTThe mycosporine-like amino acids (MAAs) are a group of small molecules with a diverse ecological distribution among microorganisms. MAAs have a range of physiological functions, including protection against UV radiation, making them important from a biotechnological perspective. In the present study, we identified a putative MAA (mys) gene cluster in two New Zealand isolates ofScytonemacf.crispum(UCFS10 and UCFS15). Homology to “Anabaena-type”mysclusters suggested that this cluster was likely to be involved in shinorine biosynthesis. Surprisingly, high-performance liquid chromatography analysis ofS. cf.crispumcell extracts revealed a complex MAA profile, including shinorine, palythine-serine, and their hexose-bound variants. It was hypothesized that a short-chain dehydrogenase (UCFS15_00405) encoded by a gene adjacent to theS. cf.crispummyscluster was responsible for the conversion of shinorine to palythine-serine. Heterologous expression of MysABCE and UCFS15_00405 inEscherichia coliresulted in the exclusive production of the parent compound shinorine. Taken together, these results suggest that shinorine biosynthesis inS. cf.crispumproceeds via anAnabaena-type mechanism and that the genes responsible for the production of other MAA analogues, including palythine-serine and glycosylated analogues, may be located elsewhere in the genome.IMPORTANCERecently, New Zealand isolates ofS. cf.crispumwere linked to the production of paralytic shellfish toxins for the first time, but no other natural products from this species have been reported. Thus, the species was screened for important natural product biosynthesis. The mycosporine-like amino acids (MAAs) are among the strongest absorbers of UV radiation produced in nature. The identification of novel MAAs is important from a biotechnology perspective, as these molecules are able to be utilized as sunscreens. This study has identified two novel MAAs that have provided several new avenues of future research related to MAA genetics and biosynthesis. Further, we have revealed that the genetic basis of MAA biosynthesis may not be clustered on the genome. The identification of the genes responsible for MAA biosynthesis is vital for future genetic engineering.


2012 ◽  
Vol 46 (4) ◽  
pp. 235-240 ◽  
Author(s):  
A. A. Sladkova ◽  
A. A. Sosnovskaya ◽  
I. P. Edimecheva ◽  
V. A. Knizhnikov ◽  
O. I. Shadyro

Marine Drugs ◽  
2014 ◽  
Vol 12 (10) ◽  
pp. 5174-5187 ◽  
Author(s):  
Sung-Suk Suh ◽  
Jinik Hwang ◽  
Mirye Park ◽  
Hyo Seo ◽  
Hyoung-Shik Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document