Photocytotoxicity of white light-emitting diode irradiation on human lens epithelium and retinal pigment epithelium via the JNK and p38 MAPK signaling pathways

Author(s):  
Jiayin Song ◽  
Daoyong Li ◽  
Zhongshu Shan ◽  
Olga Kurskaya ◽  
Kirill Sharshov ◽  
...  
2021 ◽  
Author(s):  
Ming-Lung Hsu ◽  
Wen-Chung Huang ◽  
Yi-Rong Zhou ◽  
Sindy Hu ◽  
Chun-Hsun Huang ◽  
...  

Abstract Objectives and designPro-inflammatory mediators such as interleukin (IL)-1b cause retinal pigment epithelium (RPE) inflammation, which is related to visual deterioration, including age-related macular degeneration and diabetic retinopathy. Oleuropein is a polyphenol compound that shows potent anti-inflammatory, antioxidant, and anti-cancer activities, but its effects on IL-1b–induced inflammation have not been examined in the adult RPE cell line ARPE-19.Materials/methodsHere, we assessed the ability of oleuropein to attenuate this inflammation in ARPE-19 cells. IL-1β induced secretion of the inflammatory cytokines IL-6, monocyte chemoattractant protein-1 (MCP)-1, and soluble intercellular adhesion molecule (sICAM)-1. As measured by enzyme-linked immunosorbent assay, oleuropein significantly inhibited levels of all three proteins and led to decreased monocyte adhesiveness to ARPE-19 cells. To clarify the underlying anti-inflammatory mechanisms, we used western blots to evaluate the effect of oleuropein on inactivation of the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Result The results showed that oleuropein significantly decreased levels of the inflammatory mediator cyclooxygenase-2 and increased anti-inflammatory protein HO-1 expression. We next examined if the anti-inflammatory activity of oleuropein arises via inactivated NF-κB. We found that suppressing phosphorylation of the JNK1/2 and p38 MAPK signaling pathways inhibited IL-6, MCP-1, and sICAM-1 secretion, implicating these pathways and NF-κB suppression in the effects of oleuropein. ConclusionsThese results indicate that oleuropein shows potential for the prevention and treatment of inflammatory diseases of the retina.


2017 ◽  
Vol 21 (12) ◽  
pp. 3453-3466 ◽  
Author(s):  
Imene Jaadane ◽  
Gloria Elisa Villalpando Rodriguez ◽  
Pierre Boulenguez ◽  
Sabine Chahory ◽  
Samuel Carré ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 489-496
Author(s):  
Teng Li ◽  
◽  
Jia-Min Meng ◽  
Bo Yuan ◽  
Wen-Juan Lin ◽  
...  

AIM: To investigate YM155's effect on retinal pigment epithelium (RPE) cells' viability and the potential regulatory mechanisms. METHODS: Human immortalized RPE cell lines (ARPE-19 cell line) were processed with YM155 and epidermal growth factor (EGF). ARPE-19 cell viability was detected by methyl thiazolyl tetrazolium assay, and apoptosis was tested by flow cytometry assay. ARPE-19 cell proliferation was assessed with bromodeoxyuridine tagged incorporation assay, and migration ability was evaluated via a wound-healing assay. Epidermal growth factor receptor (EGFR)/MAPK pathway proteins were tested via immunoblotting. EGFR localization was examined by immunofluorescence assay. RESULTS: YM155 suppressed ARPE-19 cells' viability in a time and concentration-dependent manner. A high dose of YM155 caused a small amount of ARPE-19 cell death. YM155 significantly diminished the ARPE-19 cells' proliferative and migrative capacity. YM155 down-regulated total EGFR and phosphorylated external signal-regulated protein kinase (ERK), and it up-regulated the phosphorylation of P38MAPK and c-Jun N-terminal kinase (JNK). YM155 induced endocytosis of EGFR in ARPE-19 cell. YM155 also attenuated EGF-induced ARPE-19 cells' proliferative and migrative capacity. Moreover, YM155 significantly decreased the expression of phosphorylated EGFR and ERK after treated by EGF. CONCLUSION: YM155 inhibits RPE cell survival, the cell proliferative and migrative capacity, and it effectuates a small amount of cell death through the EGFR/MAPK signaling pathway. YM155 might, therefore, be an agent to prevent and treat abnormal RPE cell survival in proliferative vitreoretinopathy.


Author(s):  
G.E. Korte ◽  
M. Marko ◽  
G. Hageman

Sodium iodate iv. damages the retinal pigment epithelium (RPE) in rabbits. Where RPE does not regenerate (e.g., 1,2) Muller glial cells (MC) forma subretinal scar that replaces RPE. The MC response was studied by HVEM in 3D computer reconstructions of serial thick sections, made using the STEREC0N program (3), and the HVEM at the NYS Dept. of Health in Albany, NY. Tissue was processed for HVEM or immunofluorescence localization of a monoclonal antibody recognizing MG microvilli (4).


Sign in / Sign up

Export Citation Format

Share Document