scholarly journals Deep learning-based quality control of cultured human-induced pluripotent stem cell-derived cardiomyocytes

2019 ◽  
Vol 140 (4) ◽  
pp. 313-316 ◽  
Author(s):  
Ken Orita ◽  
Kohei Sawada ◽  
Ryuta Koyama ◽  
Yuji Ikegaya
eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Francis Grafton ◽  
Jaclyn Ho ◽  
Sara Ranjbarvaziri ◽  
Farshad Farshidfar ◽  
Anastasiia Budan ◽  
...  

Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish biologically relevant models that use phenotypic screening to detect drug-induced toxicity in vitro. In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive compounds and identified those with potential cardiotoxic liabilities in iPSC-CMs using a single-parameter score based on deep learning. Compounds demonstrating cardiotoxicity in iPSC-CMs included DNA intercalators, ion channel blockers, epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a diverse library of molecules with unknown targets and identified chemical frameworks that show cardiotoxic signal in iPSC-CMs. By using this screening approach during target discovery and lead optimization, we can de-risk early-stage drug discovery. We show that the broad applicability of combining deep learning with iPSC technology is an effective way to interrogate cellular phenotypes and identify drugs that may protect against diseased phenotypes and deleterious mutations.


2018 ◽  
Vol 13 (7) ◽  
pp. 859-866 ◽  
Author(s):  
Stephen Sullivan ◽  
Glyn N Stacey ◽  
Chihiro Akazawa ◽  
Naoki Aoyama ◽  
Ricardo Baptista ◽  
...  

2021 ◽  
Author(s):  
Francis Grafton ◽  
Jaclyn Ho ◽  
Sara Ranjbarvaziri ◽  
Farshad Farshidfar ◽  
Anastasiia Budan ◽  
...  

Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish biologically relevant models that use phenotypic screening to predict drug-induced toxicity. In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive compounds and identified those predicted to have cardiotoxic liabilities using a single-parameter score based on deep learning. Compounds with major predicted cardiotoxicity included DNA intercalators, ion channel blockers, epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a diverse library of molecules with unknown targets and identified chemical frameworks with predicted cardiotoxic liabilities. By using this screening approach during target discovery and lead optimization, we can de-risk early-stage drug discovery. We show that the broad applicability of combining deep learning with iPSC technology is an effective way to interrogate cellular phenotypes and identify drugs that protect against diseased phenotypes and deleterious mutations.


2018 ◽  
Author(s):  
Fantuzzi Federica ◽  
Toivonen Sanna ◽  
Schiavo Andrea Alex ◽  
Pachera Nathalie ◽  
Rajaei Bahareh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document