protein quality control system
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 23 (1) ◽  
pp. 345
Author(s):  
Yaping Liu ◽  
Runrong Ding ◽  
Ze Xu ◽  
Yuan Xue ◽  
Dongdong Zhang ◽  
...  

Alzheimer’s disease (AD) is characterized by the deposition of senile plaques (SPs) and the formation of neurofibrillary tangles (NTFs), as well as neuronal dysfunctions in the brain, but in fact, patients have shown a sustained disease progression for at least 10 to 15 years before these pathologic biomarkers can be detected. Consequently, as the most common chronic neurological disease in the elderly, the challenge of AD treatment is that it is short of effective biomarkers for early diagnosis. The protein quality control system is a collection of cellular pathways that can recognize damaged proteins and thereby modulate their turnover. Abundant evidence indicates that the accumulation of abnormal proteins in AD is closely related to the dysfunction of the protein quality control system. In particular, it is the synthesis, degradation, and removal of essential biological components that have already changed in the early stage of AD, which further encourages us to pay more attention to the protein quality control system. The review mainly focuses on the endoplasmic reticulum system (ERS), autophagy–lysosome system (ALS) and the ubiquitin–proteasome system (UPS), and deeply discusses the relationship between the protein quality control system and the abnormal proteins of AD, which can not only help us to understand how and why the complex regulatory system becomes malfunctional during AD progression, but also provide more novel therapeutic strategies to prevent the development of AD.


2021 ◽  
Vol 22 (23) ◽  
pp. 12983
Author(s):  
Aitor Franco ◽  
Jorge Cuéllar ◽  
José Ángel Fernández-Higuero ◽  
Igor de la Arada ◽  
Natalia Orozco ◽  
...  

The aggregation of α-synuclein is the hallmark of a collective of neurodegenerative disorders known as synucleinopathies. The tendency to aggregate of this protein, the toxicity of its aggregation intermediates and the ability of the cellular protein quality control system to clear these intermediates seems to be regulated, among other factors, by post-translational modifications (PTMs). Among these modifications, we consider herein proteolysis at both the N- and C-terminal regions of α-synuclein as a factor that could modulate disassembly of toxic amyloids by the human disaggregase, a combination of the chaperones Hsc70, DnaJB1 and Apg2. We find that, in contrast to aggregates of the protein lacking the N-terminus, which can be solubilized as efficiently as those of the WT protein, the deletion of the C-terminal domain, either in a recombinant context or as a consequence of calpain treatment, impaired Hsc70-mediated amyloid disassembly. Progressive removal of the negative charges at the C-terminal region induces lateral association of fibrils and type B* oligomers, precluding chaperone action. We propose that truncation-driven aggregate clumping impairs the mechanical action of chaperones, which includes fast protofilament unzipping coupled to depolymerization. Inhibition of the chaperone-mediated clearance of C-truncated species could explain their exacerbated toxicity and higher propensity to deposit found in vivo.


2021 ◽  
Author(s):  
Ning Wang ◽  
Yifan Wang ◽  
Qian Zhao ◽  
Xiang Zhang ◽  
Chao Peng ◽  
...  

Protein homeostasis in plastids is strategically regulated by the protein quality control system involving multiple chaperones and proteases, among them the Clp protease. We determined the structure of the chloroplast ClpP complex from Chlamydomonas reinhardtiiby cryo-EM. ClpP contains two heptameric catalytic rings without any symmetry. The top ring contains one ClpR6, three ClpP4 and three ClpP5 subunits while the bottom ring is composed of three ClpP1C subunits and one each of the ClpR1-4 subunits. ClpR3, ClpR4 and ClpT4 subunits connect the two rings and stabilize the complex. The chloroplast Cpn11/20/23 co-chaperonin, a co-factor of Cpn60, forms a cap on the top of ClpP by protruding mobile loops into hydrophobic clefts at the surface of the top ring. The co-chaperonin repressed ClpP proteolytic activity in vitro. By regulating Cpn60 chaperone and ClpP protease activity, the co-chaperonin may play a role in coordinating protein folding and degradation in the chloroplast.


Author(s):  
Aymeric P. Bailly ◽  
Dimitris P. Xirodimas

Molecular chaperones are essential components of the protein quality control system and maintenance of homeostasis. Heat Shock Protein 70 (HSP70), a highly evolutionarily conserved family of chaperones is a key regulator of protein folding, oligomerisation and prevents the aggregation of misfolded proteins. HSP70 chaperone function depends on the so-called ‘HSP70-cycle', where HSP70 interacts with and is released from substrates via ATP hydrolysis and the assistance of HSP70 co-factors/co-chaperones, which also provide substrate specificity. The identification of regulatory modules for HSP70 allows the elucidation of HSP70 specificity and target selectivity. Here, we discuss how the HSP70 cycle is functionally linked with the cycle of the Ubiquitin-like molecule NEDD8. Using as an example the DNA damage response, we present a model where HSP70 acts as a sensor of the NEDD8 cycle. The NEDD8 cycle acts as a regulatory module of HSP70 activity, where conversion of poly-NEDD8 chains into mono-NEDD8 upon DNA damage activates HSP70, facilitating the formation of the apoptosome and apoptosis execution.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kenichi Kimura ◽  
Astrid Ooms ◽  
Kathrin Graf-Riesen ◽  
Maithreyan Kuppusamy ◽  
Andreas Unger ◽  
...  

AbstractAn amino acid exchange (P209L) in the HSPB8 binding site of the human co-chaperone BAG3 gives rise to severe childhood cardiomyopathy. To phenocopy the disease in mice and gain insight into its mechanisms, we generated humanized transgenic mouse models. Expression of human BAG3P209L-eGFP in mice caused Z-disc disintegration and formation of protein aggregates. This was accompanied by massive fibrosis resulting in early-onset restrictive cardiomyopathy with increased mortality as observed in patients. RNA-Seq and proteomics revealed changes in the protein quality control system and increased autophagy in hearts from hBAG3P209L-eGFP mice. The mutation renders hBAG3P209L less soluble in vivo and induces protein aggregation, but does not abrogate hBAG3 binding properties. In conclusion, we report a mouse model mimicking the human disease. Our data suggest that the disease mechanism is due to accumulation of hBAG3P209L and mouse Bag3, causing sequestering of components of the protein quality control system and autophagy machinery leading to sarcomere disruption.


Author(s):  
Sahoko Shirai ◽  
Ryota Uemura ◽  
Megumi Maeda ◽  
Hiroyuki Kajiura ◽  
Ryo Misaki ◽  
...  

Abstract Cytosolic peptide: N-glycanase (cPNGase), which occurs ubiquitously in eukaryotic cells, is involved in the de-N-glycosylation of misfolded glycoproteins in the protein quality control system. In this study, we aimed to provide direct evidence of plant cPNGase activity against a denatured glycoprotein using a crude extract prepared from a mutant line of Arabidopsis thaliana lacking two acidic PNGase genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kinia Ameztoy ◽  
Ángela María Sánchez-López ◽  
Francisco José Muñoz ◽  
Abdellatif Bahaji ◽  
Goizeder Almagro ◽  
...  

Microorganisms produce volatile compounds (VCs) with molecular masses of less than 300 Da that promote plant growth and photosynthesis. Recently, we have shown that small VCs of less than 45 Da other than CO2 are major determinants of plant responses to fungal volatile emissions. However, the regulatory mechanisms involved in the plants’ responses to small microbial VCs remain unclear. In Arabidopsis thaliana plants exposed to small fungal VCs, growth promotion is accompanied by reduction of the thiol redox of Calvin-Benson cycle (CBC) enzymes and changes in the levels of shikimate and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway-related compounds. We hypothesized that plants’ responses to small microbial VCs involve post-translational modulation of enzymes of the MEP and shikimate pathways via mechanisms involving redox-activated photosynthesis signaling. To test this hypothesis, we compared the responses of wild-type (WT) plants and a cfbp1 mutant defective in a redox-regulated isoform of the CBC enzyme fructose-1,6-bisphosphatase to small VCs emitted by the fungal phytopathogen Alternaria alternata. Fungal VC-promoted growth and photosynthesis, as well as metabolic and proteomic changes, were substantially weaker in cfbp1 plants than in WT plants. In WT plants, but not in cfbp1 plants, small fungal VCs reduced the levels of both transcripts and proteins of the stromal Clp protease system and enhanced those of plastidial chaperonins and co-chaperonins. Consistently, small fungal VCs promoted the accumulation of putative Clp protease clients including MEP and shikimate pathway enzymes. clpr1-2 and clpc1 mutants with disrupted plastidial protein homeostasis responded weakly to small fungal VCs, strongly indicating that plant responses to microbial volatile emissions require a finely regulated plastidial protein quality control system. Our findings provide strong evidence that plant responses to fungal VCs involve chloroplast-to-nucleus retrograde signaling of redox-activated photosynthesis leading to proteostatic regulation of the MEP and shikimate pathways.


Sign in / Sign up

Export Citation Format

Share Document