scholarly journals The reliance of phytohormone biosynthesis on primary metabolite precursors

2022 ◽  
Vol 268 ◽  
pp. 153589
Author(s):  
Norma Fàbregas ◽  
Alisdair R. Fernie
Keyword(s):  
2019 ◽  
Vol 7 (5) ◽  
pp. 651-659 ◽  
Author(s):  
Jie Wang ◽  
Pengfei Zhou ◽  
Xiaolei Shi ◽  
Na Yang ◽  
Long Yan ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3377 ◽  
Author(s):  
Mohamed A. Farag ◽  
Asmaa M. Otify ◽  
Aly M. El-Sayed ◽  
Camilia G. Michel ◽  
Shaimaa A. ElShebiney ◽  
...  

Interest in developing coffee substitutes is on the rise, to minimizing its health side effects. In the Middle East, date palm (Phoenix dactylifera L.) pits are often used as a coffee substitute post roasting. In this study, commercially-roasted date pit products, along with unroasted and home-prepared roasted date pits, were subjected to analyses for their metabolite composition, and neuropharmacological evaluation in mice. Headspace SPME-GCMS and GCMS post silylation were employed for characterizing its volatile and non-volatile metabolite profile. For comparison to roasted coffee, coffee product was also included. There is evidence that some commercial date pit products appear to contain undeclared additives. SPME headspace analysis revealed the abundance of furans, pyrans, terpenoids and sulfur compounds in roasted date pits, whereas pyrroles and caffeine were absent. GCMS-post silylation employed for primary metabolite profiling revealed fatty acids’ enrichment in roasted pits versus sugars’ abundance in coffee. Biological investigations affirmed that date pit showed safer margin than coffee from its LD50, albeit it exhibits no CNS stimulant properties. This study provides the first insight into the roasting impact on the date pit through its metabolome and its neuropharmacological aspects to rationalize its use as a coffee substitute.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Rianne E. van Outersterp ◽  
Sam J. Moons ◽  
Udo F. H. Engelke ◽  
Herman Bentlage ◽  
Tessa M. A. Peters ◽  
...  

AbstractThe identification of disease biomarkers plays a crucial role in developing diagnostic strategies for inborn errors of metabolism and understanding their pathophysiology. A primary metabolite that accumulates in the inborn error phenylketonuria is phenylalanine, however its levels do not always directly correlate with clinical outcomes. Here we combine infrared ion spectroscopy and NMR spectroscopy to identify the Phe-glucose Amadori rearrangement product as a biomarker for phenylketonuria. Additionally, we find analogous amino acid-glucose metabolites formed in the body fluids of patients accumulating methionine, lysine, proline and citrulline. Amadori rearrangement products are well-known intermediates in the formation of advanced glycation end-products and have been associated with the pathophysiology of diabetes mellitus and ageing, but are now shown to also form under conditions of aminoacidemia. They represent a general class of metabolites for inborn errors of amino acid metabolism that show potential as biomarkers and may provide further insight in disease pathophysiology.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4484
Author(s):  
Nooruddin-bin Sadiq ◽  
Da-Hye Ryu ◽  
Jwa-Yeong Cho ◽  
A-Hyeon Lee ◽  
Dae-Geun Song ◽  
...  

Ganoderma lucidum extract is a potent traditional remedy for curing various ailments. Drying is the most important postharvest step during the processing of Ganoderma lucidum. The drying process mainly involves heat (36 h at 60 °C) and freeze-drying (36 h at −80 °C). We investigated the effects of different postharvest drying protocols on the metabolites profiling of Ganoderma lucidum using GC-MS, followed by an investigation of the anti-neuroinflammatory potential in LPS-treated BV2 microglial cells. A total of 109 primary metabolites were detected from heat and freeze-dried samples. Primary metabolite profiling showed higher levels of amino acids (17.4%) and monosaccharides (8.8%) in the heat-dried extracts, whereas high levels of organic acids (64.1%) were present in the freeze-dried samples. The enzymatic activity, such as ATP-citrate synthase, pyruvate kinase, glyceraldehyde-3-phosphatase dehydrogenase, glutamine synthase, fructose-bisphosphate aldolase, and D-3-phosphoglycerate dehydrogenase, related to the reverse tricarboxylic acid cycle were significantly high in the heat-dried samples. We also observed a decreased phosphorylation level of the MAP kinase (Erk1/2, p38, and JNK) and NF-κB subunit p65 in the heat-dried samples of the BV2 microglia cells. The current study suggests that heat drying improves the production of ganoderic acids by the upregulation of TCA-related pathways, which, in turn, gives a significant reduction in the inflammatory response of LPS-induced BV2 cells. This may be attributed to the inhibition of NF-κB and MAP kinase signaling pathways in cells treated with heat-dried extracts.


2011 ◽  
Vol 437 (3) ◽  
pp. 505-513 ◽  
Author(s):  
Elizabeth Allen ◽  
Annick Moing ◽  
Jonathan A. D. Wattis ◽  
Tony Larson ◽  
Mickaël Maucourt ◽  
...  

ACN1 (acetate non-utilizing 1) is a short-chain acyl-CoA synthetase which recycles free acetate to acetyl-CoA in peroxisomes of Arabidopsis. Pulse-chase [2-13C]acetate feeding of the mutant acn1–2 revealed that acetate accumulation and assimilation were no different to that of wild-type, Col-7. However, the lack of acn1–2 led to a decrease of nearly 50% in 13C-labelling of glutamine, a major carbon sink in seedlings, and large decreases in primary metabolite levels. In contrast, acetyl-CoA levels were higher in acn1–2 compared with Col-7. The disappearance of eicosenoic acid was slightly delayed in acn1–2 indicating only a small effect on the rate of lipid breakdown. A comparison of transcript levels in acn1–2 and Col-7 showed that induced genes included a number of metabolic genes and also a large number of signalling-related genes. Genes repressed in the mutant were represented primarily by embryogenesis-related genes. Transcript levels of glyoxylate cycle genes also were lower in acn1–2 than in Col-7. We conclude that deficiency in peroxisomal acetate assimilation comprises only a small proportion of total acetate use, but this affects both primary metabolism and gene expression. We discuss the possibility that ACN1 safeguards against the loss of carbon as acetate from peroxisomes during lipid mobilization.


Life Sciences ◽  
1995 ◽  
Vol 57 (3) ◽  
pp. PL45-PL50 ◽  
Author(s):  
Deborah C Mash ◽  
Julie K Staley ◽  
Michael H Baumann ◽  
Richard B Rothman ◽  
W Lee Hearn

Soil Systems ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 53 ◽  
Author(s):  
Joshua Padilla ◽  
H. Selim

Glyphosate (N-(phosphonomethyl) glycine) (GPS) is currently the most commonly used herbicide worldwide, and is generally considered as immobile in soils. However, numerous reports of the environmental occurrence of the herbicide coupled with recent evidence of human toxicity necessitate further investigation as to the behavior of GPS in the soil environment. Batch sorption studies along with miscible displacement experiments were carried out in order to assess the mobility of GPS in two Louisiana agricultural soils; Commerce silt loam and Sharkey clay. Batch results indicated a high affinity of both soils for solvated GPS, with greater affinity observed by the Sharkey soil. GPS sorption in the Commerce soil was most likely facilitated by the presence of amorphous Fe and Al oxides, whereas the high cation exchange capacity of the Sharkey soil likely allows for GPS complexation with surface exchangeable poly-valent cations. Miscible displacement studies indicate that GPS mobility is highly limited in both soils, with 3% and 2% of the applied herbicide mass recovered in the effluent solution from the Commerce and Sharkey soils, respectively. A two-site multi-reaction transport model (MRTM) adequately described GPS breakthrough from both soils and outperformed linear modeling efforts using CXTFIT. Analysis of extracted herbicide residues suggests that the primary metabolite of GPS, aminomethylphosphonic acid (AMPA), is more mobile in both soils, although both compounds are strongly retained.


RSC Advances ◽  
2017 ◽  
Vol 7 (83) ◽  
pp. 52661-52671 ◽  
Author(s):  
Zhihong Yao ◽  
Shishi Li ◽  
Zifei Qin ◽  
Xiaodan Hong ◽  
Yi Dai ◽  
...  

Norbakuchinic acid (NBKA) is the most abundant metabolite of bakuchiol (a hepatotoxicity and nephrotoxicity component inPsoralea corylifoliaL.) in plasma and urine.


ChemInform ◽  
2001 ◽  
Vol 32 (5) ◽  
pp. no-no
Author(s):  
Susanna Tchilibon ◽  
Raphael Mechoulam
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document