Spatially resolved optical measurements of water partial pressure and temperature in a PEM fuel cell under dynamic operating conditions

2006 ◽  
Vol 162 (1) ◽  
pp. 286-293 ◽  
Author(s):  
S. Basu ◽  
M.W. Renfro ◽  
B.M. Cetegen
2022 ◽  
Vol 334 ◽  
pp. 04016
Author(s):  
Tomasz Bednarek

The performance of the PEM fuel cell directly depends on the partial pressure of provided reactants, namely hydrogen and oxygen. Since reactants are consumed in the fuel cell reaction, partial pressure of reactants decreases in the direction of reactants flow. This well-known mechanism makes the performance of the fuel cell dependent on the stoichiometry ratios of input reactants. The JRC ZERO∇CELL, a single cell PEM fuel cell testing setup, is developed to provide as much as possible uniform operating conditions at the 10cm2 active area specimen, hence giving uniform current density across the active area of the cell. To investigate what is the real gradient of current density across the active area for the JRC ZERO∇CELL at various reactant stoichiometry ratios, segmented bi-polar plates and current collectors are developed. This study presents experimental investigation of the current density distribution across the active area of the JRC ZERO∇CELL setup at range of reactant stoichiometry ratios from λ = 2 up to λ = 15. Current density gradients are considered along the gas flow as well as in the transverse direction. The experimental results show that the current density gradient across the active area, although dependant on the reactants stoichiometry ratios, is relatively small as compared with a wide range of investigated stoichiometry ratios.


Author(s):  
M. Minutillo ◽  
E. Jannelli ◽  
F. Tunzio

The main objective of this study is to evaluate the performance of a proton exchange membrane (PEM) fuel cell generator operating for residential applications. The fuel cell performance has been evaluated using the test bed of the University of Cassino. The experimental activity has been focused to evaluate the performance in different operating conditions: stack temperature, feeding mode, and fuel composition. In order to use PEM fuel cell technology on a large scale, for an electric power distributed generation, it could be necessary to feed fuel cells with conventional fuel, such as natural gas, to generate hydrogen in situ because currently the infrastructure for the distribution of hydrogen is almost nonexistent. Therefore, the fuel cell performance has been evaluated both using pure hydrogen and reformate gas produced by a natural gas reforming system.


2006 ◽  
Vol 4 (4) ◽  
pp. 468-473 ◽  
Author(s):  
Alessandra Perna

The purpose of this work is to investigate, by a thermodynamic analysis, the effects of the process variables on the performance of an autothermal reforming (ATR)-based fuel processor, operating on ethanol as fuel, integrated into an overall proton exchange membrane (PEM) fuel cell system. This analysis has been carried out finding the better operating conditions to maximize hydrogen yield and to minimize CO carbon monoxide production. In order to evaluate the overall efficiency of the system, PEM fuel cell operations have been analyzed by an available parametric model.


2019 ◽  
Vol 25 (35) ◽  
pp. 275-292 ◽  
Author(s):  
Seng Kian Cheah ◽  
Olivier Lemaire ◽  
Patrick Gélin ◽  
Alejandro A. Franco

2012 ◽  
Vol 37 (9) ◽  
pp. 7736-7744 ◽  
Author(s):  
Dietmar Gerteisen ◽  
Nada Zamel ◽  
Christian Sadeler ◽  
Florian Geiger ◽  
Victor Ludwig ◽  
...  

2008 ◽  
Vol 180 (1) ◽  
pp. 476-483 ◽  
Author(s):  
Jer-Huan Jang ◽  
Han-Chieh Chiu ◽  
Wei-Mon Yan ◽  
Wei-Lian Sun

Sign in / Sign up

Export Citation Format

Share Document