Effects of operating conditions on the performances of individual cell and stack of PEM fuel cell

2008 ◽  
Vol 180 (1) ◽  
pp. 476-483 ◽  
Author(s):  
Jer-Huan Jang ◽  
Han-Chieh Chiu ◽  
Wei-Mon Yan ◽  
Wei-Lian Sun
Author(s):  
Sang-Kyun Park ◽  
Song-Yul Choe

Performance of individual cells in an operating polymer electrolyte membrane (PEM) fuel cell stack is different from each other because of inherent manufacturing tolerances of the cell components and unequal operating conditions for the individual cells. In this paper, first, effects of different operating conditions on performance of the individual cells in a two-cell PEM fuel cell stack have been experimentally investigated. The results of the experiments showed the presence of a voltage difference between the two cells that cannot be manipulated by operating conditions. The temperature of the supplying air among others predominantly influences the individual cell voltages. In addition, those effects are explored by using a dynamic model of a stack that has been developed. The model uses electrochemical voltage equations, dynamic water balance in the membrane, energy balance, and diffusion in the gas diffusion layer, reflecting a two-phase phenomenon of water. Major design parameters and an operating condition by conveying simulations have been changed to analyze sensitivity of the parameters on the performance, which is then compared with experimental results. It turns out that proton conductivity of the membrane in cells among others is the most influential parameter on the performance, which is fairly in line with the reading from the experimental results.


Author(s):  
Taehee Han ◽  
Tessa A. Haagenson ◽  
Hossein Salehfar ◽  
Samir Dahal ◽  
Mike D. Mann

In this study, an efficient method of approximating individual fuel cell impedances in a stack is proposed and experimentally verified. Two different proton exchange membrane (PEM) fuel cell stacks (600 W with 24 cells and 1.2 kW with 47 cells) were used to develop and verify the method. Both PEM fuel cell stacks were operated using room air and pure hydrogen (99.999%). Impedance and current - voltage (I-V) data were collected for stack and individual cell levels under various operating conditions. The experimental result shows that the individual cell impedance is directly proportional to the corresponding cell voltage. Therefore individual cell impedance can be accurately estimated by performing only stack impedance and individual cell voltage measurements.


Author(s):  
Susanta K. Das ◽  
Antonio Reis ◽  
K. Joel Berry

In this study, we designed and built a 1 kW (16-cells) stack prototype of high temperature PEM fuel cell with 440cm2 active area of each individual cell. The purpose of this research is to experimentally study the performance of our newly built high temperature PEM fuel cell stack at different operating conditions and to judge the performance for possible commercialization aspects. The performance of the fuel cell stack in terms of current-voltage characteristics has been experimentally measured for each of the cells in the 16-cell stack (1kW). Experimental data of this type is required to develop and validate the fuel cell models to understand and optimize the operation of the stack and further stack design improvements. The fuel cell stack is fed with industry-grade (99.999%) pure hydrogen. The fuel cell stack was extensively tested at 145°C and the current-voltage characteristics were determined by varying the current loads. The results will be very helpful to understand the cell performance in terms of current-voltage characteristics of 1kW PEM fuel cell stack.


Author(s):  
M. Minutillo ◽  
E. Jannelli ◽  
F. Tunzio

The main objective of this study is to evaluate the performance of a proton exchange membrane (PEM) fuel cell generator operating for residential applications. The fuel cell performance has been evaluated using the test bed of the University of Cassino. The experimental activity has been focused to evaluate the performance in different operating conditions: stack temperature, feeding mode, and fuel composition. In order to use PEM fuel cell technology on a large scale, for an electric power distributed generation, it could be necessary to feed fuel cells with conventional fuel, such as natural gas, to generate hydrogen in situ because currently the infrastructure for the distribution of hydrogen is almost nonexistent. Therefore, the fuel cell performance has been evaluated both using pure hydrogen and reformate gas produced by a natural gas reforming system.


2006 ◽  
Vol 4 (4) ◽  
pp. 468-473 ◽  
Author(s):  
Alessandra Perna

The purpose of this work is to investigate, by a thermodynamic analysis, the effects of the process variables on the performance of an autothermal reforming (ATR)-based fuel processor, operating on ethanol as fuel, integrated into an overall proton exchange membrane (PEM) fuel cell system. This analysis has been carried out finding the better operating conditions to maximize hydrogen yield and to minimize CO carbon monoxide production. In order to evaluate the overall efficiency of the system, PEM fuel cell operations have been analyzed by an available parametric model.


2019 ◽  
Vol 25 (35) ◽  
pp. 275-292 ◽  
Author(s):  
Seng Kian Cheah ◽  
Olivier Lemaire ◽  
Patrick Gélin ◽  
Alejandro A. Franco

2012 ◽  
Vol 37 (9) ◽  
pp. 7736-7744 ◽  
Author(s):  
Dietmar Gerteisen ◽  
Nada Zamel ◽  
Christian Sadeler ◽  
Florian Geiger ◽  
Victor Ludwig ◽  
...  

Author(s):  
Vernon Webb ◽  
Michael Hickner ◽  
Donald Baird ◽  
Scott Case ◽  
John Lesko

The electrical and mechanical properties of new lightweight graphite polymeric separator plates aged in a PEM fuel cell were investigated to assess their resistance to short-term durability. While the changes in electrical properties of great interest to the operation of the fuel cell, mechanical and dimensional stability over the life of the cell are critical. Thus, new polymeric based separator plates developed at Virginia Tech were aged under standard operating conditions in a PEM fuel cell over 300 hours at low pressure and 85°C. A comparison of conductivity, stiffness and strength of aged plates was made to as manufactured and unaged plates. Over the aging period, electrical conductivity did not decline even as the fuel cell performance showed some changes as evidenced by polarization curves. However, the mechanical strength of the monopolar plates was observed to declined less than 10% after 300 hours of fuel cell operation, due to the lack of stability of the polyester resin used to facilitate the rapid manufacturing of these new plates. These property changes were found to be independent of aging on the reduction and oxidation sides. Further work continues on plates formed through both fiber wet lay technology and those produced by compression molding of unique graphite filled epoxy systems, and to improve the electrochemical performance of cells fabricated using the resulting plates to levels comparable to those observed when using existing plate materials.


Sign in / Sign up

Export Citation Format

Share Document