Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules

2012 ◽  
Vol 213 ◽  
pp. 391-401 ◽  
Author(s):  
Ben Kenney ◽  
Ken Darcovich ◽  
Dean D. MacNeil ◽  
Isobel J. Davidson
Batteries ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 23 ◽  
Author(s):  
Maeva Philippot ◽  
Garbiñe Alvarez ◽  
Elixabete Ayerbe ◽  
Joeri Van Mierlo ◽  
Maarten Messagie

Lithium-ion battery packs inside electric vehicles represents a high share of the final price. Nevertheless, with technology advances and the growth of the market, the price of the battery is getting more competitive. The greenhouse gas emissions and the battery cost have been studied previously, but coherent boundaries between environmental and economic assessments are needed to assess the eco-efficiency of batteries. In this research, a detailed study is presented, providing an environmental and economic assessment of the manufacturing of one specific lithium-ion battery chemistry. The relevance of parameters is pointed out, including the manufacturing place, the production volume, the commodity prices, and the energy density. The inventory is obtained by dismantling commercial cells. The correlation between the battery cost and the commodity price is much lower than the correlation between the battery cost and the production volume. The developed life cycle assessment concludes that the electricity mix that is used to power the battery factory is a key parameter for the impact of the battery manufacturing on climate change. To improve the battery manufacturing eco-efficiency, a high production capacity and an electricity mix with low carbon intensity are suggested. Optimizing the process by reducing the electricity consumption during the manufacturing is also suggested, and combined with higher pack energy density, the impact on climate change of the pack manufacturing is as low as 39.5 kg CO2 eq/kWh.


Batteries ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 3 ◽  
Author(s):  
Gerd Liebig ◽  
Ulf Kirstein ◽  
Stefan Geißendörfer ◽  
Frank Schuldt ◽  
Carsten Agert

To draw reliable conclusions about the thermal characteristic of or a preferential cooling strategy for a lithium–ion battery, the correct set of thermal input parameters and a detailed battery layout is crucial. In our previous work, an electrochemical model for a commercially-available, 40 Ah prismatic lithium–ion battery was validated under heuristic temperature dependence. In this work the validated electrochemical model is coupled to a spatially resolved, three dimensional (3D), thermal model of the same battery to evaluate the thermal characteristics, i.e., thermal barriers and preferential heat rejection patterns, within common environment layouts. We discuss to which extent the knowledge of the batteries’ interior layout can be constructively used for the design of an exterior battery thermal management. It is found from the study results that: (1) Increasing the current rate without considering an increased heat removal flux at natural convection at higher temperatures will lead to increased model deviations; (2) Centralized fan air-cooling within a climate chamber in a multi cell test arrangement can lead to significantly different thermal characteristics at each battery cell; (3) Increasing the interfacial surface area, at which preferential battery interior and exterior heat rejection match, can significantly lower the temperature rise and inhomogeneity within the electrode stack and increase the batteries’ lifespan.


2019 ◽  
Vol 86 (10) ◽  
Author(s):  
Bo Lu ◽  
Chengqiang Ning ◽  
Yanfei Zhao ◽  
Yicheng Song ◽  
Junqian Zhang

To determine the impact of cohesive law shapes on the modeling of interfacial debonding in lithium-ion battery electrodes, analytical methods based on different cohesive models for the debonding process have been developed individually. Three different cohesive laws, namely, triangular, trapezoidal, and rectangular laws, have been employed. To ensure comparability, the cohesive strength and the fracture toughness have been set to be identical for different cohesive laws. The evaluation of debonding onset has suggested that the cohesive law shape affects the modeling results only when the interface is ductile. The largest possible difference for the triangular law and the rectangular law on the debonding onset has been estimated. A discussion for specific electrodes has also been provided.


2020 ◽  
Vol 49 (14) ◽  
pp. 4667-4680 ◽  
Author(s):  
Luyi Yang ◽  
Kai Yang ◽  
Jiaxin Zheng ◽  
Kang Xu ◽  
Khalil Amine ◽  
...  

The impact of surface structure and interface reconstruction on the electrochemical performances of lithium-ion battery cathode materials is summarized.


Author(s):  
Aramis Perez ◽  
Vanessa Quintero ◽  
Francisco Jaramillo ◽  
Heraldo Rozas ◽  
Diego Jimenez ◽  
...  

The use of energy storage devices, such as lithium-ion batteries, has become popular in many different domains and applications. Hence, it is relatively easy to find literature associated with problems of battery state-of-charge estimation and energy autonomy prognostics. Despite this fact, the characterization of battery degradation processes is still a matter of ongoing research. Indeed, most battery degradation models solely consider operation under nominal (or strictly controlled) conditions, although actual operating profiles (including discharge current) may differ significantly from those. In this context, this article proposes a lithium-ion battery degradation model that incorporates the impact of arbitrary discharge currents. Also, the proposed model, initially calibrated through data reported for a specific lithium-ion battery type, can characterize degradation curves for other lithium-ion batteries. Two case studies have been carried out to validate the proposed model, initially calibrated by using data from a Sony battery. The first case study uses our own experimental data obtained for a Panasonic lithium-ion cell, which was cycled and degraded at high current rates. The second case study considers the analysis of two public data sets available at the Prognostics Center of Excellence of NASA Ames Research Center website, for batteries cycled using nominal and 2-C (twice the nominal) discharge currents. Results show that the proposed model can characterize degradation processes properly, even when cycles are subject to different discharge currents and for batteries not manufactured by Sony (whose data were used for the initial calibration).


2019 ◽  
Vol 423 ◽  
pp. 263-270 ◽  
Author(s):  
Mariem Maiza ◽  
Youcef Mammeri ◽  
Dinh An Nguyen ◽  
Nathalie Legrand ◽  
Philippe Desprez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document