Characterization of the degradation process of lithium-ion batteries when discharged at different current rates

Author(s):  
Aramis Perez ◽  
Vanessa Quintero ◽  
Francisco Jaramillo ◽  
Heraldo Rozas ◽  
Diego Jimenez ◽  
...  

The use of energy storage devices, such as lithium-ion batteries, has become popular in many different domains and applications. Hence, it is relatively easy to find literature associated with problems of battery state-of-charge estimation and energy autonomy prognostics. Despite this fact, the characterization of battery degradation processes is still a matter of ongoing research. Indeed, most battery degradation models solely consider operation under nominal (or strictly controlled) conditions, although actual operating profiles (including discharge current) may differ significantly from those. In this context, this article proposes a lithium-ion battery degradation model that incorporates the impact of arbitrary discharge currents. Also, the proposed model, initially calibrated through data reported for a specific lithium-ion battery type, can characterize degradation curves for other lithium-ion batteries. Two case studies have been carried out to validate the proposed model, initially calibrated by using data from a Sony battery. The first case study uses our own experimental data obtained for a Panasonic lithium-ion cell, which was cycled and degraded at high current rates. The second case study considers the analysis of two public data sets available at the Prognostics Center of Excellence of NASA Ames Research Center website, for batteries cycled using nominal and 2-C (twice the nominal) discharge currents. Results show that the proposed model can characterize degradation processes properly, even when cycles are subject to different discharge currents and for batteries not manufactured by Sony (whose data were used for the initial calibration).

Nanoscale ◽  
2021 ◽  
Author(s):  
Cong Liu ◽  
Shuang Zhang ◽  
Yuanyuan Feng ◽  
Xiaowei Miao ◽  
Gang Yang ◽  
...  

In this work, Li1.12K0.05Mn0.57Ni0.24Nb0.02O2 (LMN-K/Nb) as a novel and high energy density cathode material is successfully synthesized and applied in lithium ion battery. Combining interlayer exchanging and elemental analysis, it...


Inventions ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 23 ◽  
Author(s):  
Jude Osara ◽  
Michael Bryant

Presented is a lithium-ion battery degradation model, based on irreversible thermodynamics, which was experimentally verified, using commonly measured operational parameters. The methodology, applicable to all lithium-ion batteries of all chemistries and composition, combined fundamental thermodynamic principles, with the Degradation–Entropy Generation theorem, to relate instantaneous capacity fade (loss of useful charge-holding capacity) in the lithium-ion battery, to the irreversible entropy generated via the underlying dissipative physical processes responsible for battery degradation. Equations relating capacity fade—aging—to battery cycling were also formulated and verified. To show the robustness of the approach, nonlinear data from abusive and inconsistent battery cycling was measured and used to verify formulations. A near 100% agreement between the thermodynamic battery model and measurements was achieved. The model also gave rise to new material and design parameters to characterize all lithium-ion batteries.


2020 ◽  
Vol 49 (14) ◽  
pp. 4667-4680 ◽  
Author(s):  
Luyi Yang ◽  
Kai Yang ◽  
Jiaxin Zheng ◽  
Kang Xu ◽  
Khalil Amine ◽  
...  

The impact of surface structure and interface reconstruction on the electrochemical performances of lithium-ion battery cathode materials is summarized.


Author(s):  
Jacqueline Sophie Edge ◽  
Simon O'Kane ◽  
Ryan Prosser ◽  
Niall D. Kirkaldy ◽  
Anisha N Patel ◽  
...  

The expansion of lithium-ion batteries from consumer electronics to larger-scale transport and energy storage applications has made understanding the many mechanisms responsible for battery degradation increasingly important. The literature in...


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 732
Author(s):  
Shimoi ◽  
Komatsu ◽  
Tanaka

The high-capacity and optimal cycle characteristics of the silicon powder anode render it essential in lithium-ion batteries. The authors attempted to obtain a composite material by coating individual silicon particles of µm-order diameter with conductive carbon additive and resin to serve as a binder of an anode in a lithium-ion battery and thus improve its charge–discharge characteristics. Structural strain and hardness due to stress on the binder resin were alleviated by the adhesion between silicon or copper foil as a collector and the binder resin, preventing the systematic deterioration of the anode composite matrix immersed in electrolyte compositions including Li salt and fluoride. Moreover, the binder resin itself was confirmed to play a role of active material with occlusion and release of Li-ion. Furthermore, charge–discharge characteristics of the silicon powder anode active material strongly depend on the type of binder resin used; therefore, the binder resin used as composite material in rechargeable batteries should be carefully selected. Some resins for binding silicon particles were investigated for their mechanical and electrochemical properties, and a carbonized polyimide obtained a good charge–discharge cyclic property in a lithium-ion battery.


Author(s):  
Bhanu Sood ◽  
Lucas Severn ◽  
Michael Osterman ◽  
Michael Pecht ◽  
Anton Bougaev ◽  
...  

Abstract A review of the prevalent degradation mechanisms in Lithium ion batteries is presented. Degradation and eventual failure in lithium-ion batteries can occur for a variety of dfferent reasons. Degradation in storage occurs primarily due to the self-discharge mechanisms, and is accelerated during storage at elevated temperatures. The degradation and failure during use conditions is generally accelerated due to the transient power requirements, the high frequency of charge/discharge cycles and differences between the state-of-charge and the depth of discharge influence the degradation and failure process. A step-by-step methodology for conducting a failure analysis of Lithion batteries is presented. The failure analysis methodology is illustrated using a decision-tree approach, which enables the user to evaluate and select the most appropriate techniques based on the observed battery characteristics. The techniques start with non-destructive and non-intrusive steps and shift to those that are more destructive and analytical in nature as information about the battery state is gained through a set of measurements and experimental techniques.


2021 ◽  
Vol 13 (10) ◽  
pp. 5726
Author(s):  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

Electromobility is a new approach to the reduction of CO2 emissions and the deceleration of global warming. Its environmental impacts are often compared to traditional mobility solutions based on gasoline or diesel engines. The comparison pertains mostly to the single life cycle of a battery. The impact of multiple life cycles remains an important, and yet unanswered, question. The aim of this paper is to demonstrate advances of 2nd life applications for lithium ion batteries from electric vehicles based on their energy demand. Therefore, it highlights the limitations of a conventional life cycle analysis (LCA) and presents a supplementary method of analysis by providing the design and results of a meta study on the environmental impact of lithium ion batteries. The study focuses on energy demand, and investigates its total impact for different cases considering 2nd life applications such as (C1) material recycling, (C2) repurposing and (C3) reuse. Required reprocessing methods such as remanufacturing of batteries lie at the basis of these 2nd life applications. Batteries are used in their 2nd lives for stationary energy storage (C2, repurpose) and electric vehicles (C3, reuse). The study results confirm that both of these 2nd life applications require less energy than the recycling of batteries at the end of their first life and the production of new batteries. The paper concludes by identifying future research areas in order to generate precise forecasts for 2nd life applications and their industrial dissemination.


Author(s):  
Xia Hua ◽  
Alan Thomas

Lithium-ion batteries are being increasingly used as the main energy storage devices in modern mobile applications, including modern spacecrafts, satellites, and electric vehicles, in which consistent and severe vibrations exist. As the lithium-ion battery market share grows, so must our understanding of the effect of mechanical vibrations and shocks on the electrical performance and mechanical properties of such batteries. Only a few recent studies investigated the effect of vibrations on the degradation and fatigue of battery cell materials as well as the effect of vibrations on the battery pack structure. This review focused on the recent progress in determining the effect of dynamic loads and vibrations on lithium-ion batteries to advance the understanding of lithium-ion battery systems. Theoretical, computational, and experimental studies conducted in both academia and industry in the past few years are reviewed herein. Although the effect of dynamic loads and random vibrations on the mechanical behavior of battery pack structures has been investigated and the correlation between vibration and the battery cell electrical performance has been determined to support the development of more robust electrical systems, it is still necessary to clarify the mechanical degradation mechanisms that affect the electrical performance and safety of battery cells.


Sign in / Sign up

Export Citation Format

Share Document