scholarly journals Urine microbial fuel cells in a semi-controlled environment for onsite urine pre-treatment and electricity production

2018 ◽  
Vol 400 ◽  
pp. 441-448 ◽  
Author(s):  
Clement A. Cid ◽  
Andrew Stinchcombe ◽  
Ioannis Ieropoulos ◽  
Michael R. Hoffmann
Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1042 ◽  
Author(s):  
Paweł P. Włodarczyk ◽  
Barbara Włodarczyk

Microbial fuel cells (MFCs) are devices than can contribute to the development of new technologies using renewable energy sources or waste products for energy production. Moreover, MFCs can realize wastewater pre-treatment, e.g., reduction of the chemical oxygen demand (COD). This research covered preparation and analysis of a catalyst and measurements of changes in the concentration of COD in the MFC with a Ni–Co cathode. Analysis of the catalyst included measurements of the electroless potential of Ni–Co electrodes oxidized for 1–10 h, and the influence of anodic charge on the catalytic activity of the Ni–Co alloy (for four alloys: 15, 25, 50, and 75% concentration of Co). For the Ni–Co alloy containing 15% of Co oxidized for 8 h, after the third anodic charge the best catalytic parameters was obtained. During the MFC operation, it was noted that the COD reduction time (to 90% efficiency) was similar to the reduction time during wastewater aeration. However, the characteristic of the aeration curve was preferred to the curve obtained during the MFC operation. The electricity measurements during the MFC operation showed that power equal to 7.19 mW was obtained (at a current density of 0.47 mA·cm−2).


2021 ◽  
Vol 775 ◽  
pp. 145904
Author(s):  
Jaecheul Yu ◽  
Younghyun Park ◽  
Evy Widyaningsih ◽  
Sunah Kim ◽  
Younggy Kim ◽  
...  

2014 ◽  
Vol 157 ◽  
pp. 114-119 ◽  
Author(s):  
Tyler Huggins ◽  
Heming Wang ◽  
Joshua Kearns ◽  
Peter Jenkins ◽  
Zhiyong Jason Ren

2020 ◽  
Vol 202 ◽  
pp. 08007
Author(s):  
Wahyu Zuli Pratiwi ◽  
Hadiyanto Hadiyanto ◽  
Purwanto Purwanto ◽  
Muthi’ah Nur Fadlilah

Microalgae-Microbial Fuel Cells (MMFCs) are very popular to be used to treat organic waste. MMFCs can function as an energy-producing wastewater pre-treatment system. Wastewater can provide an adequate supply of nutrients, support the large capacity of biofuel production, and can be integrated with existing wastewater treatment infrastructure. The reduced content of Chemical Oxygen Demand (COD) is one way to measure the efficiency of wastewater treatment. MMFCs reactors are made in the form of two chambers (anode and cathode) both of which are connected by a salt bridge. Tofu wastewater as an anode and Spirulina sp as a cathode. To improve MFCs performance which is to obtain maximum COD removal and electricity generation, nutrient NaHCO3 as the nutrient carbon source for Spirulina sp was varied. The system running phase on 12 days. The results were Spirulina sp treated with MFCs technology has better growth than non-MFCs. The MMFC generated a maximum power density of 21.728 mW/cm2 and achieved 57.37% COD removal. These results showed that the combined process was effective in treating tofu wastewater.


2017 ◽  
Vol 69 ◽  
pp. 346-352 ◽  
Author(s):  
Benyi Xiao ◽  
Meng Luo ◽  
Xiao Wang ◽  
Zuoxing Li ◽  
Hong Chen ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4712
Author(s):  
Dawid Nosek ◽  
Agnieszka Cydzik-Kwiatkowska

Development of economical and environment-friendly Microbial Fuel Cells (MFCs) technology should be associated with waste management. However, current knowledge regarding microbiological bases of electricity production from complex waste substrates is insufficient. In the following study, microbial composition and electricity generation were investigated in MFCs powered with waste volatile fatty acids (VFAs) from anaerobic digestion of primary sludge. Two anode sizes were tested, resulting in organic loading rates (OLRs) of 69.12 and 36.21 mg chemical oxygen demand (COD)/(g MLSS∙d) in MFC1 and MFC2, respectively. Time of MFC operation affected the microbial structure and the use of waste VFAs promoted microbial diversity. High abundance of Deftia sp. and Methanobacterium sp. characterized start-up period in MFCs. During stable operation, higher OLR in MFC1 favored growth of exoelectrogens from Rhodopseudomonas sp. (13.2%) resulting in a higher and more stable electricity production in comparison with MFC2. At a lower OLR in MFC2, the percentage of exoelectrogens in biomass decreased, while the abundance of genera Leucobacter, Frigoribacterium and Phenylobacterium increased. In turn, this efficiently decomposed complex organic substances, favoring high and stable COD removal (over 85%). Independent of the anode size, Clostridium sp. and exoelectrogens belonging to genera Desulfobulbus and Acinetobacter were abundant in MFCs powered with waste VFAs.


Author(s):  
R Irnawati ◽  
D Surilayani ◽  
R P Aditia ◽  
A Maldini ◽  
S Jusamatalaisi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document