A rational design of solid polymer electrolyte with high salt concentration for lithium battery

2018 ◽  
Vol 407 ◽  
pp. 23-30 ◽  
Author(s):  
Yanbiao Zhao ◽  
Yang Bai ◽  
Yongpin Bai ◽  
Maozhong An ◽  
Guorong Chen ◽  
...  
Author(s):  
Xingzhao Zhang ◽  
Ying Chu ◽  
Ximing Cui ◽  
Yuxuan Li ◽  
Qinmin Pan

Solid-state lithium battery is considered as a promising candidate for next-generation energy storage systems because of its high safety and energy density. Solid polymer electrolyte is a paramount component in...


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1885 ◽  
Author(s):  
Mohamad A. Brza ◽  
Shujahadeen B. Aziz ◽  
Muaffaq M. Nofal ◽  
Salah R. Saeed ◽  
Shakhawan Al-Zangana ◽  
...  

In the present work it was shown that low lattice energy ammonium salts are not favorable for polymer electrolyte preparation for electrochemical device applications. Polymer blend electrolytes based on chitosan:poly(ethylene oxide) (CS:PEO) incorporated with various amounts of low lattice energy NH4BF4ammonium salt have been prepared using the solution cast technique. Both structural and morphological studies were carried out to understand the phenomenon of ion association. Sharp peaks appeared in X-ray diffraction (XRD) spectra of the samples with high salt concentration. The degree of crystallinity increased from 8.52 to 65.84 as the salt concentration increased up to 40 wt.%. These are correlated to the leakage of the associated anions and cations of the salt to the surface of the polymer. The structural behaviors were further confirmed by morphological study. The morphological results revealed the large-sized protruded salts at high salt concentration. Based on lattice energy of salts, the phenomena of salt leakage were interpreted. Ammonium salts with lattice energy lower than 600 kJ/mol are not preferred for polymer electrolyte preparation due to the significant tendency of ion association among cations and anions. Electrical impedance spectroscopy was used to estimate the conductivity of the samples. It was found that the bulk resistance increased from 1.1 × 104 ohm to 0.7 × 105 ohm when the salt concentration raised from 20 wt.% to 40 wt.%, respectively; due to the association of cations and anions. The low value of direct current (DC) conductivity (7.93 × 10−7 S/cm) addressed the non-suitability of the electrolytes for electrochemical device applications. The calculated values of the capacitance over the interfaces of electrodes-electrolytes (C2) were found to drop from 1.32 × 10−6 F to 3.13 × 10−7 F with increasing salt concentration. The large values of dielectric constant at low frequencies are correlated to the electrode polarization phenomena while their decrements with rising frequency are attributed to the lag of ion polarization in respect of the fast orientation of the applied alternating current (AC) field. The imaginary part of the electric modulus shows obvious peaks known as conduction relaxation peaks.


2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Mohd Noor Zairi Mohd Sapri ◽  
Azizah Hanom Ahmad

The solid polymer electrolytes (SPEs) composed of Poly (ethylene oxide) (PEO) with sodium trifluoromethanesulfonate (NaCF3SO3) salt has been prepared by solution casting technique. The conductivity and dielectric of the solid polymer electrolyte systems were studied within the broad frequency range of 50 Hz–1 MHz and within a temperature range of 30 ˚C to 100 ˚C. The samples were prepared by various salt concentrations ranging from 2 wt% to 22 wt%. The sample containing 18 wt% of NaCF3SO3 salt exhibit the highest ionic conductivity of 1.091 x 10-5 Scm-1 at 30 ˚C. The conductivity of the SPEs has been found to depend on the salt concentration that was added to the sample. When higher salt concentration was added, ionic conductivity decreased due to the association of ions. The temperature of conductivity from 30 ˚C to 100 ˚C of SPEs was found to obey the Arrhenius rule. The dielectric permittivity decreased rapidly towards high frequencies due to the electrode polarization effects. 


Sign in / Sign up

Export Citation Format

Share Document