Sb2S3 embedded in carbon–silicon oxide nanofibers as high-performance anode materials for lithium-ion and sodium-ion batteries

2019 ◽  
Vol 435 ◽  
pp. 226762 ◽  
Author(s):  
Jianjun Xie ◽  
Jing Xia ◽  
Yiting Yuan ◽  
Li Liu ◽  
Yue Zhang ◽  
...  
2020 ◽  
Vol 49 (44) ◽  
pp. 15712-15717
Author(s):  
Lin Sun ◽  
Jie Xie ◽  
Xixi Zhang ◽  
Lei Zhang ◽  
Jun Wu ◽  
...  

Carbon nanobubbles are regarded as one of the most promising carbon-based anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), with significantly improved capacity and superior cycling stability.


2017 ◽  
Vol 5 (6) ◽  
pp. 4739-4745 ◽  
Author(s):  
Qichang Pan ◽  
Fenghua Zheng ◽  
Xing Ou ◽  
Chenghao Yang ◽  
Xunhui Xiong ◽  
...  

Author(s):  
Fei Zhang ◽  
Tao Jing ◽  
Shao Cai ◽  
Mingsen Deng ◽  
Dongmei Liang ◽  
...  

Rational design of high-performance anode materials is of paramount importance for developing rechargeable lithium ion batteries (LIBs) and sodium ion batteries (SIBs). In this work, ZrC2 monolayer is predicted by...


Author(s):  
Xikai Wu ◽  
Baozhu Wu ◽  
Haoli Wang ◽  
Qiangqiang Zhuang ◽  
Zhennan Xiong ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7521
Author(s):  
Hosung Hwang ◽  
Honggyu Seong ◽  
So Yi Lee ◽  
Joon Ha Moon ◽  
Sung Kuk Kim ◽  
...  

Sodium ion batteries (SIBs) have drawn interest as a lithium ion battery (LIB) alternative owing to their low price and low deposits. To commercialize SIBs similar to how LIBs already have been, it is necessary to develop improved anode materials that have high stability and capacity to operate over many and long cycles. This paper reports the development of homogeneous Sb2S3 nanorods (Sb2S3 NRs) on reduced graphene oxide (Sb2S3 NRs @rGO) as anode materials for SIBs. Based on this work, Sb2S3 NRs show a discharge capacity of 564.42 mAh/g at 100 mA/g current density after 100 cycles. In developing a composite with reduced graphene oxide, Sb2S3 NRs@rGO present better cycling performance with a discharge capacity of 769.05 mAh/g at the same condition. This achievement justifies the importance of developing Sb2S3 NRs and Sb2S3 NRs@rGO for SIBs.


2020 ◽  
Vol 10 (9) ◽  
pp. 3098 ◽  
Author(s):  
Yaohui Zhang ◽  
Nana Wang ◽  
Zhongchao Bai

Limited by the development of energy storage technology, the utilization ratio of renewable energy is still at a low level. Lithium/sodium ion batteries (LIBs/SIBs) with high-performance electrochemical performances, such as large-scale energy storage, low costs and high security, are expected to improve the above situation. Currently, developing anode materials with better electrochemical performances is the main obstacle to the development of LIBs/SIBs. Recently, a variety of studies have focused on cobalt-based anode materials applied for LIBs/SIBs, owing to their high theoretical specific capacity. This review systematically summarizes the recent status of cobalt-based anode materials in LIBs/SIBs, including Li+/Na+ storage mechanisms, preparation methods, applications and strategies to improve the electrochemical performance of cobalt-based anode materials. Furthermore, the current challenges and prospects are also discussed in this review. Benefitting from these results, cobalt-based materials can be the next-generation anode for LIBs/SIBs.


2020 ◽  
Vol 9 (1) ◽  
pp. 1227-1236
Author(s):  
Yemao Lin ◽  
Jintao Huang ◽  
Ludi Shi ◽  
Guangtao Cong ◽  
Caizhen Zhu ◽  
...  

AbstractAn easy and facile hydrothermal method is presented to synthesize hybrid materials of hollow mesoporous Zn0.76Co0.24S nanospheres anchored on reduced graphene oxide (rGO) sheets (Zn0.76Co0.24S@N/S-rGO), in which the obtained Zn0.76Co0.24S nanospheres are composed of numerous nanoparticles. Being evaluated as anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), the Zn0.76Co0.24S@N/S-rGO composites exhibited a high reversible capacity of 804 and 605 mA h g−1 at the current density of 1 A g−1 after 500 cycles for LIBs and SIBs, respectively. The excellent electrochemical performance of Zn0.76Co0.24S@N/S-rGO composites originates from the synergistic effect between hollow Zn0.76Co0.24S nanospheres and reduction graphene, as well as the void spaces between the neighbouring nanoparticles of Zn0.76Co0.24S providing large contact areas with electrolyte and buffer zone to accommodate the volume variation during the cycling process.


Sign in / Sign up

Export Citation Format

Share Document