Methanol conversion efficiency to CO2 on PtRu nanoparticles supported catalysts, a DEMS study

2019 ◽  
Vol 437 ◽  
pp. 226915
Author(s):  
Angélica María Baena-Moncada ◽  
Antony Bazan-Aguilar ◽  
Elena Pastor ◽  
Gabriel Ángel Planes
Author(s):  
Mohammad Hasan Peyrovi ◽  
Nastaran Parsafard ◽  
Hosein Hasanpour

In the present work, several parameters affecting on the catalytic behavior were studied in the process of partial oxidation of methanol to formaldehyde, such as: Mo/Fe ratio in unsupported catalysts, weight percent of the metallic phase in the supported catalysts, the effect of different supports, the method of Mo-Fe deposition on the supports, and the stability of the prepared catalysts against coke. These catalysts were characterized by X-ray diffraction (XRD), Fourier Transform Infra Red (FT-IR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), N2 adsorption-desorption, and Atomic Adsorption Spectroscopy (AAS) methods. The best results (the methanol conversion = 97 % and formaldehyde selectivity = 96 %) were obtained for Mo-Fe/g-Al2O3 prepared by co-precipitation method with Mo/Fe = 1.7, 50 wt.% of Fe-Mo phase, 2 mL/h methanol flow rate, and 120 mL/min air flow rate at 350 oC. Copyright © 2018 BCREC Group. All rights reservedReceived: 1st January 2018; Revised: 17th July 2018; Accepted: 24th July 2018How to Cite: Peyrovi, M.H., Parsafard, N., Hasanpour, H. (2018). Catalytic Study of the Partial Oxidation Reaction of Methanol to Formaldehyde in the Vapor Phase. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3): 520-528 (doi:10.9767/bcrec.13.3.2048.520-528)Permalink/DOI: https://doi.org/10.9767/bcrec.13.3.2048.520-528 


2020 ◽  
Vol 34 (11) ◽  
pp. 2050108
Author(s):  
S. Meiyazhagan ◽  
S. Yugeswaran ◽  
K. Suresh ◽  
P. V. Ananthapadmanabhan ◽  
A. Kobayashi

Plasma-assisted methanol reforming is an effective technology to produce hydrogen for various clean energy applications. In this study, hydrogen was produced from methanol reforming in a unique single stage microplasma reactor. Microplasma was produced between the capillary stainless steel tube electrodes by using high voltage direct current (DC) power supply. Blend of methanol and water was supplied to the microplasma reactor in a controlled flow rate using nitrogen as carrier gas. The effects of applied input power to the discharge and methanol feed rate on the performance of the plasma methanol decomposition were investigated. The experimental results showed that increasing the applied input power expressively increased the methanol conversion and hydrogen energy yield. In contrast, the increased feed rate significantly decreased the methanol conversion efficiency though it enriched the hydrogen energy yield. Under selective conditions, hydrogen energy yield of 24.14 g kW[Formula: see text] h[Formula: see text] was achieved with the conversion efficiency of 71% and 50% selectivity for H2, which is comparatively better than many of plasma-assisted methanol reforming processes. This investigation reveals that methanol reforming through a single stage microplasma reactor has the ability to produce hydrogen efficiently without coke formation at room-temperature and atmospheric pressure.


Author(s):  
J. Liu ◽  
M. Pan ◽  
G. E. Spinnler

Small metal particles have peculiar chemical and physical properties as compared to bulk materials. They are especially important in catalysis since metal particles are common constituents of supported catalysts. The structural characterization of small particles is of primary importance for the understanding of structure-catalytic activity relationships. The shape and size of metal particles larger than approximately 5 nm in diameter can be determined by several imaging techniques. It is difficult, however, to deduce the shape of smaller metal particles. Coherent electron nanodiffraction (CEND) patterns from nano particles contain information about the particle size, shape, structure and defects etc. As part of an on-going program of STEM characterization of supported catalysts we report some preliminary results of CEND study of Ag nano particles, deposited in situ in a UHV STEM instrument, and compare the experimental results with full dynamical simulations in order to extract information about the shape of Ag nano particles.


Author(s):  
R. L. Freed ◽  
M. J. Kelley

The commercial introduction of Pt-Re supported catalysts to replace Pt alone on Al2O3 has brought improvements to naphtha reforming. The bimetallic catalyst can be operated continuously under conditions which lead to deactivation of the single metal catalyst by coke formation. Much disagreement still exists as to the exact nature of the bimetallic catalyst at a microscopic level and how it functions in the process so successfully. The overall purpose of this study was to develop the materials characterization tools necessary to study supported catalysts. Specifically with the Pt-Re:Al2O3 catalyst, we sought to elucidate the elemental distribution on the catalyst.


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21824-21833 ◽  
Author(s):  
Jyoti V. Patil ◽  
Sawanta S. Mali ◽  
Chang Kook Hong

Controlling the grain size of the organic–inorganic perovskite thin films using thiourea additives now crossing 2 μm size with >20% power conversion efficiency.


Sign in / Sign up

Export Citation Format

Share Document