Laser generated WS2 quantum dots for effective charge transport in high-performance carbon-based perovskite solar cells

2022 ◽  
Vol 518 ◽  
pp. 230766
Author(s):  
Shuhan Li ◽  
Yang Li ◽  
Ke Liu ◽  
Mengwei Chen ◽  
Weidong Peng ◽  
...  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chi Zhang ◽  
Zhiyuan He ◽  
Xuanhui Luo ◽  
Rangwei Meng ◽  
Mengwei Chen ◽  
...  

AbstractIn this work, inorganic tin-doped perovskite quantum dots (PQDs) are incorporated into carbon-based perovskite solar cells (PSCs) to improve their photovoltaic performance. On the one hand, by controlling the content of Sn2+ doping, the energy level of the tin-doped PQDs can be adjusted, to realize optimized band alignment and enhanced separation of photogenerated electron–hole pairs. On the other hand, the incorporation of tin-doped PQDs provided with a relatively high acceptor concentration due to the self-p-type doping effect is able to reduce the width of the depletion region near the back surface of the perovskite, thereby enhancing the hole extraction. Particularly, after the addition of CsSn0.2Pb0.8I3 quantum dots (QDs), improvement of the power conversion efficiency (PCE) from 12.80 to 14.22% can be obtained, in comparison with the pristine device. Moreover, the experimental results are analyzed through the simulation of the one-dimensional perovskite/tin-doped PQDs heterojunction.


2021 ◽  
pp. 100853
Author(s):  
G. Nagaraj ◽  
Mustafa K.A. Mohammed ◽  
Masoud Shekargoftar ◽  
P. Sasikumar ◽  
P. Sakthivel ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Mriganka Singh ◽  
Chih Wei Chu ◽  
Annie Ng

Nowadays, the power conversion efficiency of organometallic mixed halide perovskite solar cells (PSCs) is beyond 25%. To fabricate highly efficient and stable PSCs, the performance of metal oxide charge transport layers (CTLs) is one of the key factors. The CTLs are employed in PSCs to separate the electrons and holes generated in the perovskite active layer, suppressing the charge recombination rate so that the charge collection efficiency can be increased at their respective electrodes. In general, engineering of metal oxide electron transport layers (ETLs) is found to be dominated in the research community to boost the performance of PSCs due to the resilient features of ETLs such as excellent electronic properties, high resistance to thermal temperature and moisture, ensuring good device stability as well as their high versatility in material preparation. The metal oxide hole transport layers in PSCs are recently intensively studied. The performance of PSCs is found to be very promising by using optimized hole transport materials. This review concisely discusses the evolution of some prevalent metal oxide charge transport materials (CTMs) including TiO2, SnO2, and NiOx, which are able to yield high-performance PSCs. The article begins with introducing the development trend of PSCs using different types of CTLs, pointing out the important criteria for metal oxides being effective CTLs, and then a variety of preparation methods for CTLs as employed by the community for high-performance PSCs are discussed. Finally, the challenges and prospects for future research direction toward scalable metal oxide CTM-based PSCs are delineated.


2021 ◽  
Vol 516 ◽  
pp. 230676
Author(s):  
Qianji Han ◽  
Fengyang Yu ◽  
Liang Wang ◽  
Shuzhang Yang ◽  
Xiaoyong Cai ◽  
...  

Solar Energy ◽  
2019 ◽  
Vol 193 ◽  
pp. 859-865 ◽  
Author(s):  
Zong-Lin Yang ◽  
Zhen-Yun Zhang ◽  
Wei-Li Fan ◽  
Chao-sheng Hu ◽  
Ling Zhang ◽  
...  

2020 ◽  
Vol 4 (9) ◽  
pp. 4506-4515
Author(s):  
Zeyang Zhang ◽  
Fengqin He ◽  
Weidong Zhu ◽  
Dandan Chen ◽  
Wenming Chai ◽  
...  

High-quality CsPbIBr2 films with a much lower self-doping level are obtained by the use of a CsI-rich precursor, which enables the fabrication of an all-inorganic, carbon-based solar cell with a superior efficiency of 10.48%.


Sign in / Sign up

Export Citation Format

Share Document