The effect of aspect ratio on the mechanical behavior of Li metal in solid-state cells

2022 ◽  
Vol 520 ◽  
pp. 230831
Author(s):  
Catherine G. Haslam ◽  
Jeffery B. Wolfenstine ◽  
Jeff Sakamoto
2018 ◽  
Vol 86 (1) ◽  
Author(s):  
Mang Zhang ◽  
Yuli Chen ◽  
Fu-pen Chiang ◽  
Pelagia Irene Gouma ◽  
Lifeng Wang

The electrospinning process enables the fabrication of randomly distributed nonwoven polymer fiber networks with high surface area and high porosity, making them ideal candidates for multifunctional materials. The mechanics of nonwoven networks has been well established for elastic deformations. However, the mechanical properties of the polymer fibrous networks with large deformation are largely unexplored, while understanding their elastic and plastic mechanical properties at different fiber volume fractions, fiber aspect ratio, and constituent material properties is essential in the design of various polymer fibrous networks. In this paper, a representative volume element (RVE) based finite element model with long fibers is developed to emulate the randomly distributed nonwoven fibrous network microstructure, enabling us to systematically investigate the mechanics and large deformation behavior of random nonwoven networks. The results show that the network volume fraction, the fiber aspect ratio, and the fiber curliness have significant influences on the effective stiffness, effective yield strength, and the postyield behavior of the resulting fiber mats under both tension and shear loads. This study reveals the relation between the macroscopic mechanical behavior and the local randomly distributed network microstructure deformation mechanism of the nonwoven fiber network. The model presented here can also be applied to capture the mechanical behavior of other complex nonwoven network systems, like carbon nanotube networks, biological tissues, and artificial engineering networks.


Author(s):  
Francis Hauris ◽  
Onur Bilgen

This paper investigates the dynamic aeroelastic behavior of strain actuated flapping wings with various geometries and boundary conditions. A fluid-structure interaction model of a plate-like flapping wing is developed. Assuming a chord Reynolds number of 100,000, the wing is harmonically actuated while varying parameters such as aspect ratio and wing root clamped percentage. Characteristic metrics for the dynamic motion, natural frequency, lift and drag are developed. These results are compared with purely structural behavior to understand the aeroelastic effects.


Author(s):  
J. A. Ávila ◽  
H. E. Jaramillo ◽  
F. Franco

The mechanical behavior of butt welds made on AZ31B magnesium alloy plates by solid-state friction stir welding (FSW) and gas tungsten arc welding (GTAW) is presented. Fatigue, tensile strength, and hardness tests were performed. Also, fractographic analyses of the weld microstructures were conducted. Tests results show that the fatigue performance of FSW joints was superior to that of conventional welding (GTAW).


Author(s):  
Edward A. Sander ◽  
Sandra L. Johnson ◽  
Victor H. Barocas ◽  
Robert T. Tranquillo

Engineered tissues are necessary to replace diseased and damaged tissues incapable of healing on their own. One method employed to produce them involves cell entrapment in a fibrin gel constrained by specially designed molds [1]. As the cells compact and remodel the gel, the combination of mold constraints and cell tractions produces fiber alignment similar to native tissues [2]. One potentially important factor in the remodeling outcome is the local mechanical environment that develops during the compaction and remodeling process. It is well established that the global stress environment leads to changes in remodeling in an isotropic sample [3], but we do not know the effect of local variations in stress field in a heterogeneous sample. To begin to assess the local mechanical environment’s role, we examined the remodeling process in cross-shaped Teflon molds (cruciforms). In this experiment, two mold geometries with differing channel widths were examined: a 1:1 aspect ratio in which the both axes possessed 8 mm wide channels, and a 1:0.5 aspect ratio in which one axis had 8 mm wide channels and the other 4 mm wide channels (fig. 1).


2011 ◽  
Vol 189-193 ◽  
pp. 3458-3461 ◽  
Author(s):  
Yi Mu Lee ◽  
Chun Hung Lai ◽  
Yuan Tsu Chen ◽  
Min Hua Cai ◽  
Shin Yi Liou ◽  
...  

A low-temperature controllable chemical bath deposition (CBD) method was demonstrated to prepare ZnO nanorod arrays. Our deposition technique includes the seeding and subsequent main CBD growth. The uniform growth ZnO nanorod arrays on the condensed ZnO seeding layer could be controlled by changing the processing parameters. Experiment results reveal that the ZnO nanorod arrays prepared under 0.03-0.05 M concentration with reaction temperature of 95 °C demonstrate the well-aligned orientation and optimum optical properties with high aspect ratio of ~21. The n-ZnO/p-NiO heterojunction electrode shows excellent rectifying behavior with extremely low leakage current. After the sensitization with N719, it is found that the degree of orientation and aspect ratio value play critical roles in the photovoltaic properties of solid-state dye-sensitized solar cells (SS-DSSCs).


2012 ◽  
Vol 730-732 ◽  
pp. 543-548
Author(s):  
Alexandre Correia ◽  
S. Mohsen Valashani ◽  
Francisco Pires ◽  
Ricardo Simões

Molecular dynamics simulations were employed to analyze the mechanical properties of polymer-based nanocomposites with varying nanofiber network parameters. The study was focused on nanofiber aspect ratio, concentration and initial orientation. The reinforcing phase affects the behavior of the polymeric nanocomposite. Simulations have shown that the fiber concentration has a significant effect on the properties, with higher loadings resulting in higher stress levels and higher stiffness, matching the general behavior from experimental knowledge in this field. The results also indicate that, within the studied range, the observed effect of the aspect ratio and initial orientation is smaller than that of the concentration, and that these two parameters are interrelated.


Sign in / Sign up

Export Citation Format

Share Document